Pregnancy identification artificial intelligence model construction method based on TPIS, ENOA and PPIB tear markers and kit

The invention discloses a pregnancy identification artificial intelligence model construction method based on TPIS, ENOA and PPIB tear markers and a kit, the artificial intelligence model for pregnancy identification can be constructed through artificial intelligence program training according to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DENG YU, HUANG JIAYU, YANG YUNI, LIU XIRU, MA ZHI, LANG TINGYUAN, ZHOU LEI, YANG SUQING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention discloses a pregnancy identification artificial intelligence model construction method based on TPIS, ENOA and PPIB tear markers and a kit, the artificial intelligence model for pregnancy identification can be constructed through artificial intelligence program training according to the characteristic that the tear concentrations of TPIS, ENOA and PPIB have significant differences in non-pregnant women and early pregnancy women; the constructed artificial intelligence model is different from the existing pregnancy identification technology in the aspects of identification principle and sample source, and the development of the pregnancy identification technology is promoted. 本发明公开了基于TPIS、ENOA、PPIB泪液标志物的妊娠鉴别人工智能模型构建方法及试剂盒,本发明利用TPIS、ENOA、PPIB的泪液浓度在未孕和孕早期女性中有显著差异,该差异特点可经人工智能程序训练构建用于妊娠鉴别的人工智能模型,构建的人工智能模型在鉴别原理和样本来源上有别于现有的妊娠鉴别技术,将促进妊娠鉴别技术的发展。