Chip surface defect detection method of compressed multi-head self-attention neural network
The invention belongs to the field of defect detection and image processing, and relates to a chip surface defect detection method based on a compressed multi-head self-attention neural network, which comprises the following steps of: photographing and collecting images on the surface of a chip by u...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHU JIE TIAN XINRU CAI JUEPING WEN KAILIN LI TIANHONG KONG LIANG ZHANG CHENGKAI |
description | The invention belongs to the field of defect detection and image processing, and relates to a chip surface defect detection method based on a compressed multi-head self-attention neural network, which comprises the following steps of: photographing and collecting images on the surface of a chip by using visible light imaging equipment, marking normal chips and defect chips in each image, and constructing a target detection data set; constructing a convolutional neural network initial model; training the initial model; and inputting a test set image in the constructed data set into a final model of the convolutional neural network based on the compressed multi-head self-attention mechanism to complete chip surface defect detection. According to the invention, the technical problems of poor detection effect and low calculation efficiency of small-size and high-density defect targets in a chip surface image when a chip with surface defects is detected in the prior art are solved.
本发明属于缺陷检测以及图像处理领域,一种压缩多头自注意力神经网络 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN117474863A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN117474863A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN117474863A3</originalsourceid><addsrcrecordid>eNqNzbEKwjAURuEuDqK-w_UBMpQW6ypBcXJycyih-UNDkyYkN_j6BvEBnL7lwNk2LznbSLkkoyaQhsHEFa7YsJIHz0FTMDQFHxNyhiZfHFsxQ2nKcEYoZqzffEVJylX4HdKybzZGuYzDz11zvF2f8i4Qw4gc67GWo3y07dAP_fnUXbp_mg-L3Dve</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Chip surface defect detection method of compressed multi-head self-attention neural network</title><source>esp@cenet</source><creator>CHU JIE ; TIAN XINRU ; CAI JUEPING ; WEN KAILIN ; LI TIANHONG ; KONG LIANG ; ZHANG CHENGKAI</creator><creatorcontrib>CHU JIE ; TIAN XINRU ; CAI JUEPING ; WEN KAILIN ; LI TIANHONG ; KONG LIANG ; ZHANG CHENGKAI</creatorcontrib><description>The invention belongs to the field of defect detection and image processing, and relates to a chip surface defect detection method based on a compressed multi-head self-attention neural network, which comprises the following steps of: photographing and collecting images on the surface of a chip by using visible light imaging equipment, marking normal chips and defect chips in each image, and constructing a target detection data set; constructing a convolutional neural network initial model; training the initial model; and inputting a test set image in the constructed data set into a final model of the convolutional neural network based on the compressed multi-head self-attention mechanism to complete chip surface defect detection. According to the invention, the technical problems of poor detection effect and low calculation efficiency of small-size and high-density defect targets in a chip surface image when a chip with surface defects is detected in the prior art are solved.
本发明属于缺陷检测以及图像处理领域,一种压缩多头自注意力神经网络</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240130&DB=EPODOC&CC=CN&NR=117474863A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240130&DB=EPODOC&CC=CN&NR=117474863A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHU JIE</creatorcontrib><creatorcontrib>TIAN XINRU</creatorcontrib><creatorcontrib>CAI JUEPING</creatorcontrib><creatorcontrib>WEN KAILIN</creatorcontrib><creatorcontrib>LI TIANHONG</creatorcontrib><creatorcontrib>KONG LIANG</creatorcontrib><creatorcontrib>ZHANG CHENGKAI</creatorcontrib><title>Chip surface defect detection method of compressed multi-head self-attention neural network</title><description>The invention belongs to the field of defect detection and image processing, and relates to a chip surface defect detection method based on a compressed multi-head self-attention neural network, which comprises the following steps of: photographing and collecting images on the surface of a chip by using visible light imaging equipment, marking normal chips and defect chips in each image, and constructing a target detection data set; constructing a convolutional neural network initial model; training the initial model; and inputting a test set image in the constructed data set into a final model of the convolutional neural network based on the compressed multi-head self-attention mechanism to complete chip surface defect detection. According to the invention, the technical problems of poor detection effect and low calculation efficiency of small-size and high-density defect targets in a chip surface image when a chip with surface defects is detected in the prior art are solved.
本发明属于缺陷检测以及图像处理领域,一种压缩多头自注意力神经网络</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzbEKwjAURuEuDqK-w_UBMpQW6ypBcXJycyih-UNDkyYkN_j6BvEBnL7lwNk2LznbSLkkoyaQhsHEFa7YsJIHz0FTMDQFHxNyhiZfHFsxQ2nKcEYoZqzffEVJylX4HdKybzZGuYzDz11zvF2f8i4Qw4gc67GWo3y07dAP_fnUXbp_mg-L3Dve</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>CHU JIE</creator><creator>TIAN XINRU</creator><creator>CAI JUEPING</creator><creator>WEN KAILIN</creator><creator>LI TIANHONG</creator><creator>KONG LIANG</creator><creator>ZHANG CHENGKAI</creator><scope>EVB</scope></search><sort><creationdate>20240130</creationdate><title>Chip surface defect detection method of compressed multi-head self-attention neural network</title><author>CHU JIE ; TIAN XINRU ; CAI JUEPING ; WEN KAILIN ; LI TIANHONG ; KONG LIANG ; ZHANG CHENGKAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN117474863A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHU JIE</creatorcontrib><creatorcontrib>TIAN XINRU</creatorcontrib><creatorcontrib>CAI JUEPING</creatorcontrib><creatorcontrib>WEN KAILIN</creatorcontrib><creatorcontrib>LI TIANHONG</creatorcontrib><creatorcontrib>KONG LIANG</creatorcontrib><creatorcontrib>ZHANG CHENGKAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHU JIE</au><au>TIAN XINRU</au><au>CAI JUEPING</au><au>WEN KAILIN</au><au>LI TIANHONG</au><au>KONG LIANG</au><au>ZHANG CHENGKAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Chip surface defect detection method of compressed multi-head self-attention neural network</title><date>2024-01-30</date><risdate>2024</risdate><abstract>The invention belongs to the field of defect detection and image processing, and relates to a chip surface defect detection method based on a compressed multi-head self-attention neural network, which comprises the following steps of: photographing and collecting images on the surface of a chip by using visible light imaging equipment, marking normal chips and defect chips in each image, and constructing a target detection data set; constructing a convolutional neural network initial model; training the initial model; and inputting a test set image in the constructed data set into a final model of the convolutional neural network based on the compressed multi-head self-attention mechanism to complete chip surface defect detection. According to the invention, the technical problems of poor detection effect and low calculation efficiency of small-size and high-density defect targets in a chip surface image when a chip with surface defects is detected in the prior art are solved.
本发明属于缺陷检测以及图像处理领域,一种压缩多头自注意力神经网络</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN117474863A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Chip surface defect detection method of compressed multi-head self-attention neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHU%20JIE&rft.date=2024-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN117474863A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |