Calibrating electrochemical sensor to generate embedding in embedding space
An electro-chemical sensor may output raw electrical signal data in response to sensing a chemical compound, but the raw electrical signal data may be difficult to interpret. Processing the electrical signal data with a machine learning model to generate an embedded output in an embedded space may p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An electro-chemical sensor may output raw electrical signal data in response to sensing a chemical compound, but the raw electrical signal data may be difficult to interpret. Processing the electrical signal data with a machine learning model to generate an embedded output in an embedded space may provide better understanding of the electrical signal data. In addition, generating other inlays in the embedding space using a pre-existing chemical property prediction model may allow for a more accurate and more efficient classification task of the electrical signal data.
电子化学传感器可响应于感测到化学化合物而输出原始电信号数据,但所述原始电信号数据可能难以解释。用机器学习模型处理所述电信号数据以在嵌入空间中生成嵌入输出可提供对所述电信号数据的更好理解。此外,利用预先存在的化学属性预测模型在所述嵌入空间中生成其他嵌入可允许所述电信号数据的更准确且更高效的分类任务。 |
---|