CFRP rubber screw mixed joint structure parameter design method based on machine learning
The invention discloses a CFRP rubber screw mixed joint structure parameter design method based on machine learning, and relates to the technical field of machine learning and parameter design, and the method comprises the following steps: obtaining the current structure parameter of a target CFRP r...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention discloses a CFRP rubber screw mixed joint structure parameter design method based on machine learning, and relates to the technical field of machine learning and parameter design, and the method comprises the following steps: obtaining the current structure parameter of a target CFRP rubber screw mixed joint; inputting the structure parameters into the trained neural network model, and outputting the current connection strength of the target CFRP rubber screw mixed joint; and performing maximization processing on the current connection strength, and taking the structure parameter corresponding to the maximized connection strength as an optimized structure parameter. According to the method, algorithm acceleration is carried out through machine learning, and optimal structure parameters are rapidly and effectively designed.
本发明公开了基于机器学习的CFRP胶螺混合接头结构参数设计方法,涉及机器学习和参数设计技术领域,该方法包括如下步骤:获取目标CFRP胶螺混合接头的当前结构参数;将结构参数输入至训练好的神经网络模型中,输出目标CFRP胶螺混合接头的当前连接强度;对当前连接强度进行最大化处理,将最大化后连接强度对应的结构参数作为优化结构参数。该方法通过机器学习进行算法 |
---|