Road surface pit detection method and readable storage medium

The invention provides a pavement pit detection method and a readable storage medium. The pavement pothole detection method comprises the following steps: acquiring a binocular image; the binocular image obtains a parallax estimation result based on a parallax estimation algorithm; the binocular ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SU JIANYE, SUN LIN, LIU PENG, LIN WANGCHENG, YING DONGPING, ZHANG CAN, LU WEIJIA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SU JIANYE
SUN LIN
LIU PENG
LIN WANGCHENG
YING DONGPING
ZHANG CAN
LU WEIJIA
description The invention provides a pavement pit detection method and a readable storage medium. The pavement pothole detection method comprises the following steps: acquiring a binocular image; the binocular image obtains a parallax estimation result based on a parallax estimation algorithm; the binocular image obtains a pavement segmentation result based on a pavement segmentation algorithm; and obtaining a pavement pothole detection result based on the parallax estimation result and the pavement segmentation result. Wherein the parallax estimation algorithm and the pavement segmentation algorithm at least share one part of the neural network. Through the configuration, on one hand, the problems of training data and application thresholds are solved through binocular images, on the other hand, through the shared neural network, the two algorithms can share intermediate data in the training and calculation process, the training and calculation speed is increased, and the overall size of the neural network participating
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116645335A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116645335A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116645335A3</originalsourceid><addsrcrecordid>eNrjZLANyk9MUSguLUpLTE5VKMgsUUhJLUlNLsnMz1PITS3JyE9RSMxLUShKTUxJTMpJVSguyS9KTE8FyqVklubyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4gKgmXmpJfHOfoaGZmYmpsbGpo7GxKgBAAVGL_0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Road surface pit detection method and readable storage medium</title><source>esp@cenet</source><creator>SU JIANYE ; SUN LIN ; LIU PENG ; LIN WANGCHENG ; YING DONGPING ; ZHANG CAN ; LU WEIJIA</creator><creatorcontrib>SU JIANYE ; SUN LIN ; LIU PENG ; LIN WANGCHENG ; YING DONGPING ; ZHANG CAN ; LU WEIJIA</creatorcontrib><description>The invention provides a pavement pit detection method and a readable storage medium. The pavement pothole detection method comprises the following steps: acquiring a binocular image; the binocular image obtains a parallax estimation result based on a parallax estimation algorithm; the binocular image obtains a pavement segmentation result based on a pavement segmentation algorithm; and obtaining a pavement pothole detection result based on the parallax estimation result and the pavement segmentation result. Wherein the parallax estimation algorithm and the pavement segmentation algorithm at least share one part of the neural network. Through the configuration, on one hand, the problems of training data and application thresholds are solved through binocular images, on the other hand, through the shared neural network, the two algorithms can share intermediate data in the training and calculation process, the training and calculation speed is increased, and the overall size of the neural network participating</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230825&amp;DB=EPODOC&amp;CC=CN&amp;NR=116645335A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230825&amp;DB=EPODOC&amp;CC=CN&amp;NR=116645335A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SU JIANYE</creatorcontrib><creatorcontrib>SUN LIN</creatorcontrib><creatorcontrib>LIU PENG</creatorcontrib><creatorcontrib>LIN WANGCHENG</creatorcontrib><creatorcontrib>YING DONGPING</creatorcontrib><creatorcontrib>ZHANG CAN</creatorcontrib><creatorcontrib>LU WEIJIA</creatorcontrib><title>Road surface pit detection method and readable storage medium</title><description>The invention provides a pavement pit detection method and a readable storage medium. The pavement pothole detection method comprises the following steps: acquiring a binocular image; the binocular image obtains a parallax estimation result based on a parallax estimation algorithm; the binocular image obtains a pavement segmentation result based on a pavement segmentation algorithm; and obtaining a pavement pothole detection result based on the parallax estimation result and the pavement segmentation result. Wherein the parallax estimation algorithm and the pavement segmentation algorithm at least share one part of the neural network. Through the configuration, on one hand, the problems of training data and application thresholds are solved through binocular images, on the other hand, through the shared neural network, the two algorithms can share intermediate data in the training and calculation process, the training and calculation speed is increased, and the overall size of the neural network participating</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANyk9MUSguLUpLTE5VKMgsUUhJLUlNLsnMz1PITS3JyE9RSMxLUShKTUxJTMpJVSguyS9KTE8FyqVklubyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4gKgmXmpJfHOfoaGZmYmpsbGpo7GxKgBAAVGL_0</recordid><startdate>20230825</startdate><enddate>20230825</enddate><creator>SU JIANYE</creator><creator>SUN LIN</creator><creator>LIU PENG</creator><creator>LIN WANGCHENG</creator><creator>YING DONGPING</creator><creator>ZHANG CAN</creator><creator>LU WEIJIA</creator><scope>EVB</scope></search><sort><creationdate>20230825</creationdate><title>Road surface pit detection method and readable storage medium</title><author>SU JIANYE ; SUN LIN ; LIU PENG ; LIN WANGCHENG ; YING DONGPING ; ZHANG CAN ; LU WEIJIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116645335A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SU JIANYE</creatorcontrib><creatorcontrib>SUN LIN</creatorcontrib><creatorcontrib>LIU PENG</creatorcontrib><creatorcontrib>LIN WANGCHENG</creatorcontrib><creatorcontrib>YING DONGPING</creatorcontrib><creatorcontrib>ZHANG CAN</creatorcontrib><creatorcontrib>LU WEIJIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SU JIANYE</au><au>SUN LIN</au><au>LIU PENG</au><au>LIN WANGCHENG</au><au>YING DONGPING</au><au>ZHANG CAN</au><au>LU WEIJIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Road surface pit detection method and readable storage medium</title><date>2023-08-25</date><risdate>2023</risdate><abstract>The invention provides a pavement pit detection method and a readable storage medium. The pavement pothole detection method comprises the following steps: acquiring a binocular image; the binocular image obtains a parallax estimation result based on a parallax estimation algorithm; the binocular image obtains a pavement segmentation result based on a pavement segmentation algorithm; and obtaining a pavement pothole detection result based on the parallax estimation result and the pavement segmentation result. Wherein the parallax estimation algorithm and the pavement segmentation algorithm at least share one part of the neural network. Through the configuration, on one hand, the problems of training data and application thresholds are solved through binocular images, on the other hand, through the shared neural network, the two algorithms can share intermediate data in the training and calculation process, the training and calculation speed is increased, and the overall size of the neural network participating</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116645335A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Road surface pit detection method and readable storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SU%20JIANYE&rft.date=2023-08-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116645335A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true