Hybrid domain feature optimization-based power quality disturbance identification method

The invention discloses an electric energy quality disturbance identification method based on mixed domain feature optimization, and relates to the field of electric energy quality disturbance detection. Electric energy quality disturbance signals are generated through simulation, and statistical fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG GUOSONG, WANG MINGQING, XIAO BIN, DONG YINGHUA, LI ZEQUN, XIAO HAOYU, TIAN NIANJIE, YANG RUI, WANG CHANGPEI, JIANG JINFANG, DAI JIANG, PAN CHENGCHAO, YAO GANG, TAN HONGXIAOYA, SHEN ZUTAO, TATSUO, YANG JIAN, TAO GUOCHANG, WANG YUEYANG, TAO YONGWEI, GU BENHONG, LIU XI, WANG RUIXIANG, YAO LU, WU YINGSHUANG, HUANG CAIYUN, WANG ZEFEN, YANG MINGWEN, TENG YANG, SU HUAYING, SHI MIN, CHEN RUI, DING ZHIMIN, XU KUN, ZHANG CHUNZHEN, CHEN CHENG, PAN PINGLU, DAI WENJU, FAN JUNQIU, YANG XIAOYAN, FU LINSONG, CHENG PINGRUI, XUE YAN, PAN YUN, LIU CENLI, CHEN GE, LIANG HAOXIN, CHEN LIN, ZHANG YUN, CHEN YUANMI, HUANG QIONG, ZHANG YAN, SHU XIAOQING, WANG CHAN, LONG ANZHOU, WU QIUJUN, LUO JING, SHANG XIAOXIA, PAN GUANGLI, YANG SHENGXIAN, YUAN YIFANG, REN XIAOCHENG, TANG JIEYAO, CHEN LONG, WANG XIUJING, WANG RONGRONG, YANG QIANG, WANG YU, ZHANG ZHENGXIONG, HAO LIPING, PAN ZHIYAO, YUAN GUANGCANG, ZHU YONG, WANG YIN, LONG BANGJIANG, ZHOU BIN, YE CHAOZHENG, CAO JIE, LIAO YUQIONG, ZENG HONGLIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention discloses an electric energy quality disturbance identification method based on mixed domain feature optimization, and relates to the field of electric energy quality disturbance detection. Electric energy quality disturbance signals are generated through simulation, and statistical feature subsets of the disturbance signals are extracted; performing S transformation on the power quality disturbance signal to obtain a modular matrix; extracting a time domain curve and a frequency domain curve from the modular matrix, and respectively extracting values from the time domain curve and the frequency domain curve to form a feature subset; constructing a high-dimensional feature complete set by the three feature subsets, and obtaining a low-dimensional optimal feature vector by adopting PSO (Particle Swarm Optimization); and inputting actual sampling data to extract optimal features, and carrying out classification identification on the power quality disturbance by adopting a KNN classifier. Power qua