End-to-end SAR-visible light image template matching method based on deep learning
The invention relates to an end-to-end SAR-visible light image template matching method based on deep learning, and belongs to the technical field of image processing. The method comprises the steps of firstly establishing a visible light-SAR heterogeneous image data set, then performing denoising p...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention relates to an end-to-end SAR-visible light image template matching method based on deep learning, and belongs to the technical field of image processing. The method comprises the steps of firstly establishing a visible light-SAR heterogeneous image data set, then performing denoising processing on an SAR image, then performing edge extraction on a visible light image and the SAR image by using a Sobel edge detection algorithm, highlighting the edge features of the visible light image and the SAR image to obtain an edge extraction image, and finally obtaining a visible light-SAR heterogeneous image. And finally, establishing a heterogeneous image template matching algorithm based on a dense connection type twin network and a region regression network, and inputting the processed heterogeneous image groups into a matching network at the same time to realize a matching task.
本发明涉及一种基于深度学习的端到端SAR-可见光图像模板匹配方法,属于图像处理技术领域。该方法首先建立可见光-SAR异源图像数据集,然后对SAR图像进行去噪处理,之后,使用Sobel边缘检测算法对可见光图像和SAR图像进行边缘提取,突出二者边缘特征, |
---|