End-to-end SAR-visible light image template matching method based on deep learning

The invention relates to an end-to-end SAR-visible light image template matching method based on deep learning, and belongs to the technical field of image processing. The method comprises the steps of firstly establishing a visible light-SAR heterogeneous image data set, then performing denoising p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI YIQIANG, CAO XIAOHE, OH JONG-GUN, CHENG CHEN, WANG SHENGZHE, ZHENG JIE, LUO ZHENBAO, KANG PENGXIN, LIAO DAN, HUO YIHUA, HUO JIANLIANG, GUAN WEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention relates to an end-to-end SAR-visible light image template matching method based on deep learning, and belongs to the technical field of image processing. The method comprises the steps of firstly establishing a visible light-SAR heterogeneous image data set, then performing denoising processing on an SAR image, then performing edge extraction on a visible light image and the SAR image by using a Sobel edge detection algorithm, highlighting the edge features of the visible light image and the SAR image to obtain an edge extraction image, and finally obtaining a visible light-SAR heterogeneous image. And finally, establishing a heterogeneous image template matching algorithm based on a dense connection type twin network and a region regression network, and inputting the processed heterogeneous image groups into a matching network at the same time to realize a matching task. 本发明涉及一种基于深度学习的端到端SAR-可见光图像模板匹配方法,属于图像处理技术领域。该方法首先建立可见光-SAR异源图像数据集,然后对SAR图像进行去噪处理,之后,使用Sobel边缘检测算法对可见光图像和SAR图像进行边缘提取,突出二者边缘特征,