Target detection method and device based on multi-task learning model

The invention discloses a target detection method and device based on a multi-task learning model. The method comprises the steps that an image is input into a feature extraction network of the multi-task learning model to extract a multi-layer feature map of the image, the image comprises a target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI WEN, ZOUCHENG, CHENG YUAN, WANG MENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention discloses a target detection method and device based on a multi-task learning model. The method comprises the steps that an image is input into a feature extraction network of the multi-task learning model to extract a multi-layer feature map of the image, the image comprises a target object, the multi-layer feature map comprises a first-layer feature map and a second-layer feature map, and the feature depth of the first-layer feature map is larger than that of the second-layer feature map; inputting the first-layer feature map into a first sub-task network in the multi-task learning model to obtain detection data of a first bounding box of the target object; and inputting the second-layer feature map into a second sub-task network in the multi-task learning model to obtain detection data of a first key point of the target object. 本公开披露了一种基于多任务学习模型的目标检测方法及装置。所述方法包括:将图像输入所述多任务学习模型的特征提取网络,以提取所述图像的多层特征图,所述图像包括目标物,所述多层特征图包括第一层特征图和第二层特征图,所述第一层特征图的特征深度大于所述第二层特征图的特征深度;将所述第一层特征图输入所述多任务学习模型中的第一子任务网络,以获取所