Residual life prediction method for intelligent electric meters under different subsystems

The invention provides a residual life prediction method for intelligent ammeters under different subsystems, and belongs to the technical field of intelligent ammeters. The problem that the existing intelligent electric meter residual life prediction is difficult to popularize or the degradation mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CUI GUOLEI, YANG HUIJUN, XUE YIFEI, ZHAO HAIYUAN, ZHANG YANJUN, JIA ZHENHUA, LI JING, LYU NING, WANG CHUNYAN, YIN JUNSHAN, NING YONGMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CUI GUOLEI
YANG HUIJUN
XUE YIFEI
ZHAO HAIYUAN
ZHANG YANJUN
JIA ZHENHUA
LI JING
LYU NING
WANG CHUNYAN
YIN JUNSHAN
NING YONGMING
description The invention provides a residual life prediction method for intelligent ammeters under different subsystems, and belongs to the technical field of intelligent ammeters. The problem that the existing intelligent electric meter residual life prediction is difficult to popularize or the degradation model is uncertain is solved; comprising the following steps that electromechanical equipment in a building is divided into six subsystems, part of data of known subsystem categories serve as training data to construct a classification model, and the classification model is utilized to obtain operation data of an intelligent electric meter under each subsystem; preprocessing the operation data of the intelligent electric meter, obtaining the main stress influencing the prediction of the residual life of the intelligent electric meter through a correlation analysis method, and selecting the operation data under the main stress to form a data set; performing normalization processing on the data set; dividing a normaliz
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115358347A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115358347A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115358347A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEuDqK-w_UBHEosukpRnBzEyaXE5E-9kCYl93bw7aXgAzid4TvL6nmHsJ9spMgBNBZ4dso50QB9Z08hF-KkiJF7JCVEOC3sZkcRmpJHIc8hoMwu00s-ohhkXS2CjYLNr6tqezk_2usOY-4go3VI0K691XVjmqPZH07mn-cLl1A8Dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Residual life prediction method for intelligent electric meters under different subsystems</title><source>esp@cenet</source><creator>CUI GUOLEI ; YANG HUIJUN ; XUE YIFEI ; ZHAO HAIYUAN ; ZHANG YANJUN ; JIA ZHENHUA ; LI JING ; LYU NING ; WANG CHUNYAN ; YIN JUNSHAN ; NING YONGMING</creator><creatorcontrib>CUI GUOLEI ; YANG HUIJUN ; XUE YIFEI ; ZHAO HAIYUAN ; ZHANG YANJUN ; JIA ZHENHUA ; LI JING ; LYU NING ; WANG CHUNYAN ; YIN JUNSHAN ; NING YONGMING</creatorcontrib><description>The invention provides a residual life prediction method for intelligent ammeters under different subsystems, and belongs to the technical field of intelligent ammeters. The problem that the existing intelligent electric meter residual life prediction is difficult to popularize or the degradation model is uncertain is solved; comprising the following steps that electromechanical equipment in a building is divided into six subsystems, part of data of known subsystem categories serve as training data to construct a classification model, and the classification model is utilized to obtain operation data of an intelligent electric meter under each subsystem; preprocessing the operation data of the intelligent electric meter, obtaining the main stress influencing the prediction of the residual life of the intelligent electric meter through a correlation analysis method, and selecting the operation data under the main stress to form a data set; performing normalization processing on the data set; dividing a normaliz</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221118&amp;DB=EPODOC&amp;CC=CN&amp;NR=115358347A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221118&amp;DB=EPODOC&amp;CC=CN&amp;NR=115358347A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CUI GUOLEI</creatorcontrib><creatorcontrib>YANG HUIJUN</creatorcontrib><creatorcontrib>XUE YIFEI</creatorcontrib><creatorcontrib>ZHAO HAIYUAN</creatorcontrib><creatorcontrib>ZHANG YANJUN</creatorcontrib><creatorcontrib>JIA ZHENHUA</creatorcontrib><creatorcontrib>LI JING</creatorcontrib><creatorcontrib>LYU NING</creatorcontrib><creatorcontrib>WANG CHUNYAN</creatorcontrib><creatorcontrib>YIN JUNSHAN</creatorcontrib><creatorcontrib>NING YONGMING</creatorcontrib><title>Residual life prediction method for intelligent electric meters under different subsystems</title><description>The invention provides a residual life prediction method for intelligent ammeters under different subsystems, and belongs to the technical field of intelligent ammeters. The problem that the existing intelligent electric meter residual life prediction is difficult to popularize or the degradation model is uncertain is solved; comprising the following steps that electromechanical equipment in a building is divided into six subsystems, part of data of known subsystem categories serve as training data to construct a classification model, and the classification model is utilized to obtain operation data of an intelligent electric meter under each subsystem; preprocessing the operation data of the intelligent electric meter, obtaining the main stress influencing the prediction of the residual life of the intelligent electric meter through a correlation analysis method, and selecting the operation data under the main stress to form a data set; performing normalization processing on the data set; dividing a normaliz</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEuDqK-w_UBHEosukpRnBzEyaXE5E-9kCYl93bw7aXgAzid4TvL6nmHsJ9spMgBNBZ4dso50QB9Z08hF-KkiJF7JCVEOC3sZkcRmpJHIc8hoMwu00s-ohhkXS2CjYLNr6tqezk_2usOY-4go3VI0K691XVjmqPZH07mn-cLl1A8Dg</recordid><startdate>20221118</startdate><enddate>20221118</enddate><creator>CUI GUOLEI</creator><creator>YANG HUIJUN</creator><creator>XUE YIFEI</creator><creator>ZHAO HAIYUAN</creator><creator>ZHANG YANJUN</creator><creator>JIA ZHENHUA</creator><creator>LI JING</creator><creator>LYU NING</creator><creator>WANG CHUNYAN</creator><creator>YIN JUNSHAN</creator><creator>NING YONGMING</creator><scope>EVB</scope></search><sort><creationdate>20221118</creationdate><title>Residual life prediction method for intelligent electric meters under different subsystems</title><author>CUI GUOLEI ; YANG HUIJUN ; XUE YIFEI ; ZHAO HAIYUAN ; ZHANG YANJUN ; JIA ZHENHUA ; LI JING ; LYU NING ; WANG CHUNYAN ; YIN JUNSHAN ; NING YONGMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115358347A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>CUI GUOLEI</creatorcontrib><creatorcontrib>YANG HUIJUN</creatorcontrib><creatorcontrib>XUE YIFEI</creatorcontrib><creatorcontrib>ZHAO HAIYUAN</creatorcontrib><creatorcontrib>ZHANG YANJUN</creatorcontrib><creatorcontrib>JIA ZHENHUA</creatorcontrib><creatorcontrib>LI JING</creatorcontrib><creatorcontrib>LYU NING</creatorcontrib><creatorcontrib>WANG CHUNYAN</creatorcontrib><creatorcontrib>YIN JUNSHAN</creatorcontrib><creatorcontrib>NING YONGMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CUI GUOLEI</au><au>YANG HUIJUN</au><au>XUE YIFEI</au><au>ZHAO HAIYUAN</au><au>ZHANG YANJUN</au><au>JIA ZHENHUA</au><au>LI JING</au><au>LYU NING</au><au>WANG CHUNYAN</au><au>YIN JUNSHAN</au><au>NING YONGMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Residual life prediction method for intelligent electric meters under different subsystems</title><date>2022-11-18</date><risdate>2022</risdate><abstract>The invention provides a residual life prediction method for intelligent ammeters under different subsystems, and belongs to the technical field of intelligent ammeters. The problem that the existing intelligent electric meter residual life prediction is difficult to popularize or the degradation model is uncertain is solved; comprising the following steps that electromechanical equipment in a building is divided into six subsystems, part of data of known subsystem categories serve as training data to construct a classification model, and the classification model is utilized to obtain operation data of an intelligent electric meter under each subsystem; preprocessing the operation data of the intelligent electric meter, obtaining the main stress influencing the prediction of the residual life of the intelligent electric meter through a correlation analysis method, and selecting the operation data under the main stress to form a data set; performing normalization processing on the data set; dividing a normaliz</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115358347A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title Residual life prediction method for intelligent electric meters under different subsystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CUI%20GUOLEI&rft.date=2022-11-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115358347A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true