Time sequence prediction method and device, equipment and storage medium

The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: OUYANG BAOQING, JIANG KAIFANG, LI WANYING, WANG GUOXUN, HU YAOLIN, JING SHIQING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator OUYANG BAOQING
JIANG KAIFANG
LI WANYING
WANG GUOXUN
HU YAOLIN
JING SHIQING
description The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved. 本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115130584A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115130584A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115130584A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEsDqK-w3VXMNSCqxSlk1P3EnJ_9UJzE5vU57eID-B04PAtTdtJAGW8JqgHpREsvkhUCijPyOSUifEWjx3NSlKAlu_NJY7ugRmyTGFtFnc3ZGx-XZnt9dI17R4p9sjJeShK39ysrW11qE_Hc_WP-QCcTzQx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Time sequence prediction method and device, equipment and storage medium</title><source>esp@cenet</source><creator>OUYANG BAOQING ; JIANG KAIFANG ; LI WANYING ; WANG GUOXUN ; HU YAOLIN ; JING SHIQING</creator><creatorcontrib>OUYANG BAOQING ; JIANG KAIFANG ; LI WANYING ; WANG GUOXUN ; HU YAOLIN ; JING SHIQING</creatorcontrib><description>The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved. 本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220930&amp;DB=EPODOC&amp;CC=CN&amp;NR=115130584A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220930&amp;DB=EPODOC&amp;CC=CN&amp;NR=115130584A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>OUYANG BAOQING</creatorcontrib><creatorcontrib>JIANG KAIFANG</creatorcontrib><creatorcontrib>LI WANYING</creatorcontrib><creatorcontrib>WANG GUOXUN</creatorcontrib><creatorcontrib>HU YAOLIN</creatorcontrib><creatorcontrib>JING SHIQING</creatorcontrib><title>Time sequence prediction method and device, equipment and storage medium</title><description>The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved. 本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEsDqK-w3VXMNSCqxSlk1P3EnJ_9UJzE5vU57eID-B04PAtTdtJAGW8JqgHpREsvkhUCijPyOSUifEWjx3NSlKAlu_NJY7ugRmyTGFtFnc3ZGx-XZnt9dI17R4p9sjJeShK39ysrW11qE_Hc_WP-QCcTzQx</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>OUYANG BAOQING</creator><creator>JIANG KAIFANG</creator><creator>LI WANYING</creator><creator>WANG GUOXUN</creator><creator>HU YAOLIN</creator><creator>JING SHIQING</creator><scope>EVB</scope></search><sort><creationdate>20220930</creationdate><title>Time sequence prediction method and device, equipment and storage medium</title><author>OUYANG BAOQING ; JIANG KAIFANG ; LI WANYING ; WANG GUOXUN ; HU YAOLIN ; JING SHIQING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115130584A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>OUYANG BAOQING</creatorcontrib><creatorcontrib>JIANG KAIFANG</creatorcontrib><creatorcontrib>LI WANYING</creatorcontrib><creatorcontrib>WANG GUOXUN</creatorcontrib><creatorcontrib>HU YAOLIN</creatorcontrib><creatorcontrib>JING SHIQING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>OUYANG BAOQING</au><au>JIANG KAIFANG</au><au>LI WANYING</au><au>WANG GUOXUN</au><au>HU YAOLIN</au><au>JING SHIQING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Time sequence prediction method and device, equipment and storage medium</title><date>2022-09-30</date><risdate>2022</risdate><abstract>The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved. 本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115130584A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Time sequence prediction method and device, equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=OUYANG%20BAOQING&rft.date=2022-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115130584A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true