Time sequence prediction method and device, equipment and storage medium
The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transfor...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | OUYANG BAOQING JIANG KAIFANG LI WANYING WANG GUOXUN HU YAOLIN JING SHIQING |
description | The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved.
本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115130584A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115130584A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115130584A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEsDqK-w3VXMNSCqxSlk1P3EnJ_9UJzE5vU57eID-B04PAtTdtJAGW8JqgHpREsvkhUCijPyOSUifEWjx3NSlKAlu_NJY7ugRmyTGFtFnc3ZGx-XZnt9dI17R4p9sjJeShK39ysrW11qE_Hc_WP-QCcTzQx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Time sequence prediction method and device, equipment and storage medium</title><source>esp@cenet</source><creator>OUYANG BAOQING ; JIANG KAIFANG ; LI WANYING ; WANG GUOXUN ; HU YAOLIN ; JING SHIQING</creator><creatorcontrib>OUYANG BAOQING ; JIANG KAIFANG ; LI WANYING ; WANG GUOXUN ; HU YAOLIN ; JING SHIQING</creatorcontrib><description>The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved.
本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220930&DB=EPODOC&CC=CN&NR=115130584A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220930&DB=EPODOC&CC=CN&NR=115130584A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>OUYANG BAOQING</creatorcontrib><creatorcontrib>JIANG KAIFANG</creatorcontrib><creatorcontrib>LI WANYING</creatorcontrib><creatorcontrib>WANG GUOXUN</creatorcontrib><creatorcontrib>HU YAOLIN</creatorcontrib><creatorcontrib>JING SHIQING</creatorcontrib><title>Time sequence prediction method and device, equipment and storage medium</title><description>The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved.
本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEsDqK-w3VXMNSCqxSlk1P3EnJ_9UJzE5vU57eID-B04PAtTdtJAGW8JqgHpREsvkhUCijPyOSUifEWjx3NSlKAlu_NJY7ugRmyTGFtFnc3ZGx-XZnt9dI17R4p9sjJeShK39ysrW11qE_Hc_WP-QCcTzQx</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>OUYANG BAOQING</creator><creator>JIANG KAIFANG</creator><creator>LI WANYING</creator><creator>WANG GUOXUN</creator><creator>HU YAOLIN</creator><creator>JING SHIQING</creator><scope>EVB</scope></search><sort><creationdate>20220930</creationdate><title>Time sequence prediction method and device, equipment and storage medium</title><author>OUYANG BAOQING ; JIANG KAIFANG ; LI WANYING ; WANG GUOXUN ; HU YAOLIN ; JING SHIQING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115130584A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>OUYANG BAOQING</creatorcontrib><creatorcontrib>JIANG KAIFANG</creatorcontrib><creatorcontrib>LI WANYING</creatorcontrib><creatorcontrib>WANG GUOXUN</creatorcontrib><creatorcontrib>HU YAOLIN</creatorcontrib><creatorcontrib>JING SHIQING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>OUYANG BAOQING</au><au>JIANG KAIFANG</au><au>LI WANYING</au><au>WANG GUOXUN</au><au>HU YAOLIN</au><au>JING SHIQING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Time sequence prediction method and device, equipment and storage medium</title><date>2022-09-30</date><risdate>2022</risdate><abstract>The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved.
本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115130584A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Time sequence prediction method and device, equipment and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=OUYANG%20BAOQING&rft.date=2022-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115130584A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |