Time sequence prediction method and device, equipment and storage medium

The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: OUYANG BAOQING, JIANG KAIFANG, LI WANYING, WANG GUOXUN, HU YAOLIN, JING SHIQING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention relates to an artificial intelligence technology, and discloses a time sequence prediction method, device and equipment and a storage medium, and the method comprises the steps: obtaining a time sequence data set; decomposing the time sequence data set through discrete wavelet transform to obtain a plurality of sub-sequence data; performing feature extraction on the plurality of sub-sequence data to obtain a plurality of feature vectors; inputting each feature vector into a corresponding prediction model for prediction to obtain a prediction result; weighted summation is carried out on the prediction results, a final result is obtained, and the weight of each prediction result is obtained through training of a meta-learning model. According to the invention, the prediction accuracy is improved. 本申请涉及人工智能技术,揭露了一种时间序列预测方法、装置、设备及存储介质,所述方法包括:获取时间序列数据集;通过离散小波变换对所述时间序列数据集进行分解,得到多个子序列数据;分别对多个子序列数据进行特征提取,得到多个特征向量;将各特征向量输入对应的预测模型进行预测,得到预测结果;对各所述预测结果进行加权求和,得到最终结果,其中,各所述预测结果的权重通过元学习模型训练得到。本申请提高了预测的准确率。