Image recognition method and server

The embodiment of the invention provides an image recognition method and a server. The method and the server can solve the problem that in the prior art, the accuracy is poor when a network model of an open source architecture is used for disease diagnosis. The image recognition method comprises the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI SHENYING, LI LINING, ZHAO DAN, XU JUN, SHAN MINZHU, CHEN XIAOZHONG, LIU YANG, ZHAO LIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI SHENYING
LI LINING
ZHAO DAN
XU JUN
SHAN MINZHU
CHEN XIAOZHONG
LIU YANG
ZHAO LIN
description The embodiment of the invention provides an image recognition method and a server. The method and the server can solve the problem that in the prior art, the accuracy is poor when a network model of an open source architecture is used for disease diagnosis. The image recognition method comprises the following steps: acquiring historical positron emission type computed tomography (PET) images of various types of brain diseases, and training a pre-constructed deep learning network based on the historical PET images to obtain a disease diagnosis model, the deep learning network comprises a plurality of layers of first convolutional networks based on M convolution kernels, at least two second convolutional networks and a full-connection network; and when a new PET image is received, identifying the new PET image based on the disease diagnosis model, and outputting a diagnosis result. 本发明实施例提供了一种图像识别方法及服务器,该方法和服务器能够解决现有技术中使用开源架构的网络模型来进行疾病诊断的准确性较差的问题。其中,图像识别方法包括:获取各个类型的脑部疾病的历史正电子发射型计算机断层显像PET图像,并基于历史PET图像对预先构建的深度学习
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114612373A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114612373A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114612373A3</originalsourceid><addsrcrecordid>eNrjZFD2zE1MT1UoSk3OT8_LLMnMz1PITS3JyE9RSMxLUShOLSpLLeJhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGJmaGRsbmxo7GxKgBANkBJlE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image recognition method and server</title><source>esp@cenet</source><creator>LI SHENYING ; LI LINING ; ZHAO DAN ; XU JUN ; SHAN MINZHU ; CHEN XIAOZHONG ; LIU YANG ; ZHAO LIN</creator><creatorcontrib>LI SHENYING ; LI LINING ; ZHAO DAN ; XU JUN ; SHAN MINZHU ; CHEN XIAOZHONG ; LIU YANG ; ZHAO LIN</creatorcontrib><description>The embodiment of the invention provides an image recognition method and a server. The method and the server can solve the problem that in the prior art, the accuracy is poor when a network model of an open source architecture is used for disease diagnosis. The image recognition method comprises the following steps: acquiring historical positron emission type computed tomography (PET) images of various types of brain diseases, and training a pre-constructed deep learning network based on the historical PET images to obtain a disease diagnosis model, the deep learning network comprises a plurality of layers of first convolutional networks based on M convolution kernels, at least two second convolutional networks and a full-connection network; and when a new PET image is received, identifying the new PET image based on the disease diagnosis model, and outputting a diagnosis result. 本发明实施例提供了一种图像识别方法及服务器,该方法和服务器能够解决现有技术中使用开源架构的网络模型来进行疾病诊断的准确性较差的问题。其中,图像识别方法包括:获取各个类型的脑部疾病的历史正电子发射型计算机断层显像PET图像,并基于历史PET图像对预先构建的深度学习</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220610&amp;DB=EPODOC&amp;CC=CN&amp;NR=114612373A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220610&amp;DB=EPODOC&amp;CC=CN&amp;NR=114612373A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI SHENYING</creatorcontrib><creatorcontrib>LI LINING</creatorcontrib><creatorcontrib>ZHAO DAN</creatorcontrib><creatorcontrib>XU JUN</creatorcontrib><creatorcontrib>SHAN MINZHU</creatorcontrib><creatorcontrib>CHEN XIAOZHONG</creatorcontrib><creatorcontrib>LIU YANG</creatorcontrib><creatorcontrib>ZHAO LIN</creatorcontrib><title>Image recognition method and server</title><description>The embodiment of the invention provides an image recognition method and a server. The method and the server can solve the problem that in the prior art, the accuracy is poor when a network model of an open source architecture is used for disease diagnosis. The image recognition method comprises the following steps: acquiring historical positron emission type computed tomography (PET) images of various types of brain diseases, and training a pre-constructed deep learning network based on the historical PET images to obtain a disease diagnosis model, the deep learning network comprises a plurality of layers of first convolutional networks based on M convolution kernels, at least two second convolutional networks and a full-connection network; and when a new PET image is received, identifying the new PET image based on the disease diagnosis model, and outputting a diagnosis result. 本发明实施例提供了一种图像识别方法及服务器,该方法和服务器能够解决现有技术中使用开源架构的网络模型来进行疾病诊断的准确性较差的问题。其中,图像识别方法包括:获取各个类型的脑部疾病的历史正电子发射型计算机断层显像PET图像,并基于历史PET图像对预先构建的深度学习</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD2zE1MT1UoSk3OT8_LLMnMz1PITS3JyE9RSMxLUShOLSpLLeJhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGJmaGRsbmxo7GxKgBANkBJlE</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>LI SHENYING</creator><creator>LI LINING</creator><creator>ZHAO DAN</creator><creator>XU JUN</creator><creator>SHAN MINZHU</creator><creator>CHEN XIAOZHONG</creator><creator>LIU YANG</creator><creator>ZHAO LIN</creator><scope>EVB</scope></search><sort><creationdate>20220610</creationdate><title>Image recognition method and server</title><author>LI SHENYING ; LI LINING ; ZHAO DAN ; XU JUN ; SHAN MINZHU ; CHEN XIAOZHONG ; LIU YANG ; ZHAO LIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114612373A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI SHENYING</creatorcontrib><creatorcontrib>LI LINING</creatorcontrib><creatorcontrib>ZHAO DAN</creatorcontrib><creatorcontrib>XU JUN</creatorcontrib><creatorcontrib>SHAN MINZHU</creatorcontrib><creatorcontrib>CHEN XIAOZHONG</creatorcontrib><creatorcontrib>LIU YANG</creatorcontrib><creatorcontrib>ZHAO LIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI SHENYING</au><au>LI LINING</au><au>ZHAO DAN</au><au>XU JUN</au><au>SHAN MINZHU</au><au>CHEN XIAOZHONG</au><au>LIU YANG</au><au>ZHAO LIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image recognition method and server</title><date>2022-06-10</date><risdate>2022</risdate><abstract>The embodiment of the invention provides an image recognition method and a server. The method and the server can solve the problem that in the prior art, the accuracy is poor when a network model of an open source architecture is used for disease diagnosis. The image recognition method comprises the following steps: acquiring historical positron emission type computed tomography (PET) images of various types of brain diseases, and training a pre-constructed deep learning network based on the historical PET images to obtain a disease diagnosis model, the deep learning network comprises a plurality of layers of first convolutional networks based on M convolution kernels, at least two second convolutional networks and a full-connection network; and when a new PET image is received, identifying the new PET image based on the disease diagnosis model, and outputting a diagnosis result. 本发明实施例提供了一种图像识别方法及服务器,该方法和服务器能够解决现有技术中使用开源架构的网络模型来进行疾病诊断的准确性较差的问题。其中,图像识别方法包括:获取各个类型的脑部疾病的历史正电子发射型计算机断层显像PET图像,并基于历史PET图像对预先构建的深度学习</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114612373A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Image recognition method and server
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20SHENYING&rft.date=2022-06-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114612373A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true