Coal seam gas emission quantity prediction method based on SSA-CIRCLE-ELM model

The invention discloses a coal seam gas emission quantity prediction method based on an SSA-CIRCLE-ELM model, and belongs to the technical field of gas prediction. The method comprises the following steps: initializing a search space of a sparrow search algorithm by utilizing CIRCLE chaotic mapping;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHENG WANBO, KOU AN, ZOU CHAO, CAO JIXIANG, FENG XIANGTAO, GOU BIN, RAN QIHUA, ZHOU XIANGDONG, SHI YAOXUAN, LU YANHE, LI XU, DU LIANG, ZHANG LINGHAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention discloses a coal seam gas emission quantity prediction method based on an SSA-CIRCLE-ELM model, and belongs to the technical field of gas prediction. The method comprises the following steps: initializing a search space of a sparrow search algorithm by utilizing CIRCLE chaotic mapping; using a sparrow search algorithm to optimize SLFN nodes of the extreme learning machine, and enabling parameters of the SLFN nodes to generate continuous probability distribution; constructing a multi-dimensional state matrix, and carrying out feature mapping on the multi-dimensional state matrix by using an extreme learning machine and minimizing an error function of the multi-dimensional state matrix; and predicting the gas data by using the optimized extreme learning machine. According to the coal seam gas emission quantity prediction method, the SSA-CIRCLE-ELM model can be constructed. 本发明基于SSA-CIRCLE-ELM模型的煤层瓦斯涌出量预测方法,属于瓦斯预测技术领域。本发明方法包括:利用CIRCLE混沌映射对麻雀搜索算法的搜索空间进行初始化;再使用麻雀搜索算法优化极限学习机的SLFN节点,使其参数生成连续概率分布;构建多维状态