SYSTEMS AND METHODS FOR PREDICTIVE NAVIGATION CONTROL

Systems and methods for predictive navigation control. A method for predictive navigation control of an autonomous vehicle includes comparing a cue node with each of a plurality of contextual memory nodes in a contextual memory structure, where the cue node represents a new event representing a dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KWON HYUKSEONG, BHATTACHARYA, RABIN, HOWARD MICHAEL D
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KWON HYUKSEONG
BHATTACHARYA, RABIN
HOWARD MICHAEL D
description Systems and methods for predictive navigation control. A method for predictive navigation control of an autonomous vehicle includes comparing a cue node with each of a plurality of contextual memory nodes in a contextual memory structure, where the cue node represents a new event representing a distance, speed, and heading around one or more newly observed objects of the autonomous vehicle, and wherein the context memory structure comprises a network of nodes, each node representing a respective previously existing event and having a respective node risk and likelihood; determining which node has a minimum corresponding difference metric, thereby defining a best matching node; if the minimum difference measure is smaller than the matching tolerance, combining the prompt node with the optimal matching node, otherwise, adding a new node corresponding to the prompt node to the scene memory structure; and identifying the most probable next node and/or the most dangerous next node. 用于预测导航控制的系统和方法。一种用于自主车辆的预测导航控制的方
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114610012A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114610012A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114610012A3</originalsourceid><addsrcrecordid>eNrjZDANjgwOcfUNVnD0c1HwdQ3x8HcJVnDzD1IICHJ18XQO8QxzVfBzDPN0dwzx9PdTcPb3Cwny9-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGJmaGBgaGRo7GxKgBAATwJ8I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR PREDICTIVE NAVIGATION CONTROL</title><source>esp@cenet</source><creator>KWON HYUKSEONG ; BHATTACHARYA, RABIN ; HOWARD MICHAEL D</creator><creatorcontrib>KWON HYUKSEONG ; BHATTACHARYA, RABIN ; HOWARD MICHAEL D</creatorcontrib><description>Systems and methods for predictive navigation control. A method for predictive navigation control of an autonomous vehicle includes comparing a cue node with each of a plurality of contextual memory nodes in a contextual memory structure, where the cue node represents a new event representing a distance, speed, and heading around one or more newly observed objects of the autonomous vehicle, and wherein the context memory structure comprises a network of nodes, each node representing a respective previously existing event and having a respective node risk and likelihood; determining which node has a minimum corresponding difference metric, thereby defining a best matching node; if the minimum difference measure is smaller than the matching tolerance, combining the prompt node with the optimal matching node, otherwise, adding a new node corresponding to the prompt node to the scene memory structure; and identifying the most probable next node and/or the most dangerous next node. 用于预测导航控制的系统和方法。一种用于自主车辆的预测导航控制的方</description><language>chi ; eng</language><subject>CONTROLLING ; GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; REGULATING ; SURVEYING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220610&amp;DB=EPODOC&amp;CC=CN&amp;NR=114610012A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220610&amp;DB=EPODOC&amp;CC=CN&amp;NR=114610012A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KWON HYUKSEONG</creatorcontrib><creatorcontrib>BHATTACHARYA, RABIN</creatorcontrib><creatorcontrib>HOWARD MICHAEL D</creatorcontrib><title>SYSTEMS AND METHODS FOR PREDICTIVE NAVIGATION CONTROL</title><description>Systems and methods for predictive navigation control. A method for predictive navigation control of an autonomous vehicle includes comparing a cue node with each of a plurality of contextual memory nodes in a contextual memory structure, where the cue node represents a new event representing a distance, speed, and heading around one or more newly observed objects of the autonomous vehicle, and wherein the context memory structure comprises a network of nodes, each node representing a respective previously existing event and having a respective node risk and likelihood; determining which node has a minimum corresponding difference metric, thereby defining a best matching node; if the minimum difference measure is smaller than the matching tolerance, combining the prompt node with the optimal matching node, otherwise, adding a new node corresponding to the prompt node to the scene memory structure; and identifying the most probable next node and/or the most dangerous next node. 用于预测导航控制的系统和方法。一种用于自主车辆的预测导航控制的方</description><subject>CONTROLLING</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SURVEYING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDANjgwOcfUNVnD0c1HwdQ3x8HcJVnDzD1IICHJ18XQO8QxzVfBzDPN0dwzx9PdTcPb3Cwny9-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGJmaGBgaGRo7GxKgBAATwJ8I</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>KWON HYUKSEONG</creator><creator>BHATTACHARYA, RABIN</creator><creator>HOWARD MICHAEL D</creator><scope>EVB</scope></search><sort><creationdate>20220610</creationdate><title>SYSTEMS AND METHODS FOR PREDICTIVE NAVIGATION CONTROL</title><author>KWON HYUKSEONG ; BHATTACHARYA, RABIN ; HOWARD MICHAEL D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114610012A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CONTROLLING</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SURVEYING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>KWON HYUKSEONG</creatorcontrib><creatorcontrib>BHATTACHARYA, RABIN</creatorcontrib><creatorcontrib>HOWARD MICHAEL D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KWON HYUKSEONG</au><au>BHATTACHARYA, RABIN</au><au>HOWARD MICHAEL D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR PREDICTIVE NAVIGATION CONTROL</title><date>2022-06-10</date><risdate>2022</risdate><abstract>Systems and methods for predictive navigation control. A method for predictive navigation control of an autonomous vehicle includes comparing a cue node with each of a plurality of contextual memory nodes in a contextual memory structure, where the cue node represents a new event representing a distance, speed, and heading around one or more newly observed objects of the autonomous vehicle, and wherein the context memory structure comprises a network of nodes, each node representing a respective previously existing event and having a respective node risk and likelihood; determining which node has a minimum corresponding difference metric, thereby defining a best matching node; if the minimum difference measure is smaller than the matching tolerance, combining the prompt node with the optimal matching node, otherwise, adding a new node corresponding to the prompt node to the scene memory structure; and identifying the most probable next node and/or the most dangerous next node. 用于预测导航控制的系统和方法。一种用于自主车辆的预测导航控制的方</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114610012A
source esp@cenet
subjects CONTROLLING
GYROSCOPIC INSTRUMENTS
MEASURING
MEASURING DISTANCES, LEVELS OR BEARINGS
NAVIGATION
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
REGULATING
SURVEYING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
TESTING
title SYSTEMS AND METHODS FOR PREDICTIVE NAVIGATION CONTROL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KWON%20HYUKSEONG&rft.date=2022-06-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114610012A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true