Natural gas pipeline thermal insulation layer defect detection method based on machine vision
The invention discloses a natural gas pipeline thermal insulation layer defect detection method based on machine vision, which comprises the following steps: arranging a liquefied natural gas pipeline shooting environment, and shooting a surface picture of a to-be-detected liquefied natural gas pipe...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention discloses a natural gas pipeline thermal insulation layer defect detection method based on machine vision, which comprises the following steps: arranging a liquefied natural gas pipeline shooting environment, and shooting a surface picture of a to-be-detected liquefied natural gas pipeline thermal insulation layer; uploading the obtained picture to a computer end and counting the gray value of the obtained picture; performing noise reduction processing on the picture; training a gray threshold detection model by using a neural network; and identifying the thermal insulation layer defect of the to-be-detected pipeline, repairing the defect and re-inspecting. Compared with a traditional method, the method is higher in recognition efficiency, is easy to operate, and saves the labor cost.
本发明公开了一种基于机器视觉的天然气管线保温层缺陷检测方法,包括:布置液化天然气管线拍摄环境,拍摄待检测液化天然气管线保温层表面图片;将所得图片上传至电脑端并统计所得图片灰度值;对图片进行降噪处理;使用神经网络训练灰度阈值检测模型;识别待检测管线保温层缺陷,修复缺陷并重新送检。本发明相较于传统方法,识别效率更高,易于操作,节省人工成本。 |
---|