Power grid static voltage stability margin probability prediction method considering new energy uncertainty

The invention relates to a power grid static voltage stability margin probability prediction method considering new energy uncertainty. The power grid static voltage stability margin probability prediction method specifically comprises the following steps: constructing a power prediction error model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU YEYAN, WANG XINYING, WANG JIANFENG, QI JINSHAN, LIAO SIYANG, PU TIANJIAO, YAO LIANGZHONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU YEYAN
WANG XINYING
WANG JIANFENG
QI JINSHAN
LIAO SIYANG
PU TIANJIAO
YAO LIANGZHONG
description The invention relates to a power grid static voltage stability margin probability prediction method considering new energy uncertainty. The power grid static voltage stability margin probability prediction method specifically comprises the following steps: constructing a power prediction error model of new energy represented by wind power and photovoltaic; constructing a wind power and photovoltaic static scene generation model based on a prediction error model and Monte Carlo sampling; constructing a single-scene static voltage stability margin prediction method based on deep learning; and generating a power grid static voltage stability margin probability prediction result considering the new energy uncertainty by adopting a kernel density estimation method. The method has the following advantages: on one hand, the scene generation model based on the new energy prediction error considers the randomness of new energy power generation, and the obtained static voltage stability margin probability distribution
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113991651A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113991651A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113991651A3</originalsourceid><addsrcrecordid>eNqNizEKwkAQRdNYiHqH8QAWS1BIKUGxEgv7sNkd1yHJ7DI7GnJ7FbS3-rzH-_Oiu8QRBYKQh6xWycEz9moDfrClnnSCwUoghiSx_akk6MkpRYYB9R49uMiZPApxAMYRkFHCBA92KGqJdVoWs5vtM66-uyjWx8O1Pm0wxQZzsu790aY-G1NWldltzb78p3kBhzpCzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power grid static voltage stability margin probability prediction method considering new energy uncertainty</title><source>esp@cenet</source><creator>XU YEYAN ; WANG XINYING ; WANG JIANFENG ; QI JINSHAN ; LIAO SIYANG ; PU TIANJIAO ; YAO LIANGZHONG</creator><creatorcontrib>XU YEYAN ; WANG XINYING ; WANG JIANFENG ; QI JINSHAN ; LIAO SIYANG ; PU TIANJIAO ; YAO LIANGZHONG</creatorcontrib><description>The invention relates to a power grid static voltage stability margin probability prediction method considering new energy uncertainty. The power grid static voltage stability margin probability prediction method specifically comprises the following steps: constructing a power prediction error model of new energy represented by wind power and photovoltaic; constructing a wind power and photovoltaic static scene generation model based on a prediction error model and Monte Carlo sampling; constructing a single-scene static voltage stability margin prediction method based on deep learning; and generating a power grid static voltage stability margin probability prediction result considering the new energy uncertainty by adopting a kernel density estimation method. The method has the following advantages: on one hand, the scene generation model based on the new energy prediction error considers the randomness of new energy power generation, and the obtained static voltage stability margin probability distribution</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220128&amp;DB=EPODOC&amp;CC=CN&amp;NR=113991651A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220128&amp;DB=EPODOC&amp;CC=CN&amp;NR=113991651A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU YEYAN</creatorcontrib><creatorcontrib>WANG XINYING</creatorcontrib><creatorcontrib>WANG JIANFENG</creatorcontrib><creatorcontrib>QI JINSHAN</creatorcontrib><creatorcontrib>LIAO SIYANG</creatorcontrib><creatorcontrib>PU TIANJIAO</creatorcontrib><creatorcontrib>YAO LIANGZHONG</creatorcontrib><title>Power grid static voltage stability margin probability prediction method considering new energy uncertainty</title><description>The invention relates to a power grid static voltage stability margin probability prediction method considering new energy uncertainty. The power grid static voltage stability margin probability prediction method specifically comprises the following steps: constructing a power prediction error model of new energy represented by wind power and photovoltaic; constructing a wind power and photovoltaic static scene generation model based on a prediction error model and Monte Carlo sampling; constructing a single-scene static voltage stability margin prediction method based on deep learning; and generating a power grid static voltage stability margin probability prediction result considering the new energy uncertainty by adopting a kernel density estimation method. The method has the following advantages: on one hand, the scene generation model based on the new energy prediction error considers the randomness of new energy power generation, and the obtained static voltage stability margin probability distribution</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQRdNYiHqH8QAWS1BIKUGxEgv7sNkd1yHJ7DI7GnJ7FbS3-rzH-_Oiu8QRBYKQh6xWycEz9moDfrClnnSCwUoghiSx_akk6MkpRYYB9R49uMiZPApxAMYRkFHCBA92KGqJdVoWs5vtM66-uyjWx8O1Pm0wxQZzsu790aY-G1NWldltzb78p3kBhzpCzA</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>XU YEYAN</creator><creator>WANG XINYING</creator><creator>WANG JIANFENG</creator><creator>QI JINSHAN</creator><creator>LIAO SIYANG</creator><creator>PU TIANJIAO</creator><creator>YAO LIANGZHONG</creator><scope>EVB</scope></search><sort><creationdate>20220128</creationdate><title>Power grid static voltage stability margin probability prediction method considering new energy uncertainty</title><author>XU YEYAN ; WANG XINYING ; WANG JIANFENG ; QI JINSHAN ; LIAO SIYANG ; PU TIANJIAO ; YAO LIANGZHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113991651A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XU YEYAN</creatorcontrib><creatorcontrib>WANG XINYING</creatorcontrib><creatorcontrib>WANG JIANFENG</creatorcontrib><creatorcontrib>QI JINSHAN</creatorcontrib><creatorcontrib>LIAO SIYANG</creatorcontrib><creatorcontrib>PU TIANJIAO</creatorcontrib><creatorcontrib>YAO LIANGZHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU YEYAN</au><au>WANG XINYING</au><au>WANG JIANFENG</au><au>QI JINSHAN</au><au>LIAO SIYANG</au><au>PU TIANJIAO</au><au>YAO LIANGZHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power grid static voltage stability margin probability prediction method considering new energy uncertainty</title><date>2022-01-28</date><risdate>2022</risdate><abstract>The invention relates to a power grid static voltage stability margin probability prediction method considering new energy uncertainty. The power grid static voltage stability margin probability prediction method specifically comprises the following steps: constructing a power prediction error model of new energy represented by wind power and photovoltaic; constructing a wind power and photovoltaic static scene generation model based on a prediction error model and Monte Carlo sampling; constructing a single-scene static voltage stability margin prediction method based on deep learning; and generating a power grid static voltage stability margin probability prediction result considering the new energy uncertainty by adopting a kernel density estimation method. The method has the following advantages: on one hand, the scene generation model based on the new energy prediction error considers the randomness of new energy power generation, and the obtained static voltage stability margin probability distribution</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113991651A
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power grid static voltage stability margin probability prediction method considering new energy uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20YEYAN&rft.date=2022-01-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113991651A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true