SYSTEM AND METHOD FDR DETECTING BACKDOOR ATTACKS IN CONVOLUTIONAL NEURAL NETWORKS
Described is a system for detecting backdoor attacks in deep convolutional neural networks (CNNs). The system compiles specifications of a pretrained CNN into an executable model, resulting in a compiled model. A set of Universal Litmus Patterns (ULPs) are fed through the compiled model, resulting i...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Described is a system for detecting backdoor attacks in deep convolutional neural networks (CNNs). The system compiles specifications of a pretrained CNN into an executable model, resulting in a compiled model. A set of Universal Litmus Patterns (ULPs) are fed through the compiled model, resulting in a set of model outputs. The set of model outputs are classified and used to determine presence of a backdoor attack in the pretrained CNN. The system performs a response based on the presence of the backdoor attack.
描述了一种对深度卷积神经网络(CNN)中的后门攻击进行检测的系统。所述系统将经预训练的CNN的规范编译为可执行模型,从而产生编译模型。将通用石蕊模式(ULP)集馈送通过编译模型,从而产生模型输出集。对模型输出集进行分类,并且使用模型输出集来确定经预训练的CNN中的后门攻击的存在。所述系统基于后门攻击的存在来执行响应。 |
---|