QUANTIZATION CONSTRAINED NEURAL IMAGE CODING

Artificial image generation may include obtaining a source image, identifying quantization information from the source image, wherein identifying the quantization information includes identifying multiresolution quantization interval information from the source image, generating a restoration filter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ALAKUIJALA JYRKI, TODERICI GEORGE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial image generation may include obtaining a source image, identifying quantization information from the source image, wherein identifying the quantization information includes identifying multiresolution quantization interval information from the source image, generating a restoration filtered image by restoration filtering the source image, generating a constrained restoration filtered image by constraining the restoration filtered image based on the quantization information, obtaining an unconstrained artificial image based on the constrained restoration filtered image and a generative artificial neural network obtained using a generative adversarial network, obtaining the artificial image by constraining the unconstrained artificial image based on the quantization information, and outputting the artificial image. 人工图像生成可以包括:获取源图像;从源图像识别量化信息,其中识别量化信息包括:从源图像识别多分辨率量化间隔信息;通过对源图像进行恢复过滤而生成恢复过滤图像;通过基于量化信息来约束恢复过滤图像而生成约束恢复过滤图像;基于约束恢复过滤图像以及使用生成式对抗网络所获取的生成式人工神经网络来获取不受约束的人工图像;通过基于量化信息来约束不受约束的人工图像而获取人工图像;以及输出人工