Distance to obstacle detection in autonomous machine applications
In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances between objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors,...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In various examples, a deep neural network (DNN) is trained to accurately predict, in deployment, distances between objects and obstacles using image data alone. The DNN may be trained with ground truth data that is generated and encoded using sensor data from any number of depth predicting sensors, such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. Camera adaptation algorithms may be used in various embodiments to adapt the DNN for use with image data generated by cameras with varying parameters, such as varying fields of view. In some examples, a post-processing safety bounds operation may be executed on the predictions of the DNN to ensure that the predictions fall within a safety-permissible range.
在各种示例中,训练深度神经网络(DNN)以便仅使用图像数据在部署中准确地预测对象和障碍之间的距离。可以使用来自任何数量的深度预测传感器的传感器数据产生和编码DNN的地面实况数据训练DNN,所述深度预测传感器例如不限于RADAR传感器,LIDAR传感器和/或SONAR传感器。在各种实施例中可以使用相机自适应算法,以使DNN适用于与具有不同参数(例如改变视场)的相机生成的图像数据。在一些示例中,可以对DNN的预测执行后处理安全边界操作,以确保预测落入安全允许的范围内。 |
---|