Single-vector hydrophone orientation estimation method based on deep learning

The invention belongs to the technical field of underwater acoustic physics and hydrophone orientation estimation, and particularly relates to a single-vector hydrophone orientation estimation method based on deep learning, which comprises the following steps of: preprocessing actually measured data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA LI, CAO HUAIGANG, REN QUNYAN, NI HAIYAN, WANG WENBO, SU LIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention belongs to the technical field of underwater acoustic physics and hydrophone orientation estimation, and particularly relates to a single-vector hydrophone orientation estimation method based on deep learning, which comprises the following steps of: preprocessing actually measured data which are received by a single-vector hydrophone and are not provided with labels to obtain preprocessed data; and inputting the preprocessed data into the trained deep learning neural network model to obtain a label corresponding to the preprocessed data as an azimuth angle of a sound source, thereby completing single-vector hydrophone azimuth estimation. 本发明属于水声物理和水听器方位估计技术领域,具体涉及一种基于深度学习的单矢量水听器方位估计方法,该方法包括:对单矢量水听器接收的不带标签的实测数据进行预处理,获得预处理后的数据;将预处理后的数据输入至训练好的深度学习神经网络模型,获得预处理后的数据对应的标签,作为声源的方位角,完成单矢量水听器方位估计。