Double-view eye fundus image fusion method based on deep learning

The invention provides a double-view eye fundus image fusion method based on deep learning, and the method is characterized in that the method comprises the following steps: S1, carrying out the preprocessing of two to-be-detected images, and obtaining two preprocessed images; S2, building a convolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FENG RUI, JIANG LULU, SHAO JINJIE, HOU JUNLIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention provides a double-view eye fundus image fusion method based on deep learning, and the method is characterized in that the method comprises the following steps: S1, carrying out the preprocessing of two to-be-detected images, and obtaining two preprocessed images; S2, building a convolutional neural network model, and training the convolutional neural network model to obtain a trained convolutional neural network model called M-net; S3, dividing the M-net into two parts, namely an M-net Part I and an M-net Part II; S4, respectively putting the two preprocessed images into M-net Part I for feature extraction, and obtaining two image feature maps; S5, splicing the two image feature maps to obtain a spliced image; S6, putting the spliced image into M-net Part II for feature fusion. 本发明提供了一种基于深度学习的双视野眼底图像融合方法,具有这样的特征,包括以下步骤,步骤S1,对两张待测图像进行预处理获得两张预处理图像;步骤S2,搭建卷积神经网络模型,对卷积神经网络模型进行训练,从而得到训练后的卷积神经网络模型,称为M-net;步骤S3,将M-net分成两部分,称为M-net PartⅠ和M-net PartⅡ;步骤S4,将两张预处理图像分别放入M-net PartⅠ进行特征提取,获得两张图像特征图;步骤S5,将两张图