Human body behavior recognition method based on time-frequency domain information

The invention discloses a human body behavior recognition method based on time-frequency domain information. The method comprises the following steps: 1, acquiring a three-axis acceleration sequence sample of a human body behavior and preprocessing the three-axis acceleration sequence sample; 2, seg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MU JUAN, DING LEI, DENG YALI, DING MEISHUANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention discloses a human body behavior recognition method based on time-frequency domain information. The method comprises the following steps: 1, acquiring a three-axis acceleration sequence sample of a human body behavior and preprocessing the three-axis acceleration sequence sample; 2, segmenting the preprocessed human body behavior three-axis acceleration sequence sample into a training set and a test set; 3, constructing an LSTM-CNN network model; 4, fusing the feature vectors extracted based on the time-frequency domain and carrying out human body behavior recognition; and 5, updating LSTM-CNN network parameters through a gradient descent back propagation algorithm. According to the invention, the accuracy of human behavior recognition can be effectively improved. 本发明公开了一种基于时频域信息的人体行为识别方法,其步骤包括:1、采集人体行为的三轴加速度序列样本并进行预处理;2、将预处理后的人体行为三轴加速度序列样本分割为训练集和测试集;3、构建LSTM-CNN网络模型;4、融合基于时频域提取的特征向量并进行人体行为识别;5、通过梯度下降反向传播算法更新LSTM-CNN网络参数。本发明能够有效提高人体行为识别的准确率。