Human body behavior recognition method based on time-frequency domain information
The invention discloses a human body behavior recognition method based on time-frequency domain information. The method comprises the following steps: 1, acquiring a three-axis acceleration sequence sample of a human body behavior and preprocessing the three-axis acceleration sequence sample; 2, seg...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention discloses a human body behavior recognition method based on time-frequency domain information. The method comprises the following steps: 1, acquiring a three-axis acceleration sequence sample of a human body behavior and preprocessing the three-axis acceleration sequence sample; 2, segmenting the preprocessed human body behavior three-axis acceleration sequence sample into a training set and a test set; 3, constructing an LSTM-CNN network model; 4, fusing the feature vectors extracted based on the time-frequency domain and carrying out human body behavior recognition; and 5, updating LSTM-CNN network parameters through a gradient descent back propagation algorithm. According to the invention, the accuracy of human behavior recognition can be effectively improved.
本发明公开了一种基于时频域信息的人体行为识别方法,其步骤包括:1、采集人体行为的三轴加速度序列样本并进行预处理;2、将预处理后的人体行为三轴加速度序列样本分割为训练集和测试集;3、构建LSTM-CNN网络模型;4、融合基于时频域提取的特征向量并进行人体行为识别;5、通过梯度下降反向传播算法更新LSTM-CNN网络参数。本发明能够有效提高人体行为识别的准确率。 |
---|