Method and device for determining near-surface azimuth anisotropy speed

The invention discloses a method and device for determining near-surface azimuth anisotropy speed. The method comprises the steps of collecting the seismic data of a to-be-measured region, and picking up the first arrival time according to the seismic data, comparing the first arrival time with a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA QINGPO, MU ZHIPING, NING HONGXIAO, CUI SHITIAN, ZU YUNFEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA QINGPO
MU ZHIPING
NING HONGXIAO
CUI SHITIAN
ZU YUNFEI
description The invention discloses a method and device for determining near-surface azimuth anisotropy speed. The method comprises the steps of collecting the seismic data of a to-be-measured region, and picking up the first arrival time according to the seismic data, comparing the first arrival time with a preset threshold value, and obtaining effective first arrival according to a comparison result, obtaining a corresponding relationship among the common center point, the offset and the azimuth angle through the effective first arrival of the common center point, and grouping the effective first arrival, obtaining the first arrival time of the same refraction layer according to the grouped effective first arrival through the geophone offset, obtaining the geophone offset range through the first arrival time of the same refraction layer, carrying out the speed analysis of different directions, obtaining the refraction speed parameters of different directions, carrying out the five-parameter ellipse fitting of the refra
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112666606A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112666606A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112666606A3</originalsourceid><addsrcrecordid>eNrjZHD3TS3JyE9RSMxLUUhJLctMTlVIyy8CMktSi3Iz8zLz0hXyUhOLdItLi9ISgZKJVZm5pSUZQPWZxfklRfkFlQrFBampKTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4AKg3L7Uk3tnP0NDIDAgMzByNiVEDAHuHNDo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and device for determining near-surface azimuth anisotropy speed</title><source>esp@cenet</source><creator>MA QINGPO ; MU ZHIPING ; NING HONGXIAO ; CUI SHITIAN ; ZU YUNFEI</creator><creatorcontrib>MA QINGPO ; MU ZHIPING ; NING HONGXIAO ; CUI SHITIAN ; ZU YUNFEI</creatorcontrib><description>The invention discloses a method and device for determining near-surface azimuth anisotropy speed. The method comprises the steps of collecting the seismic data of a to-be-measured region, and picking up the first arrival time according to the seismic data, comparing the first arrival time with a preset threshold value, and obtaining effective first arrival according to a comparison result, obtaining a corresponding relationship among the common center point, the offset and the azimuth angle through the effective first arrival of the common center point, and grouping the effective first arrival, obtaining the first arrival time of the same refraction layer according to the grouped effective first arrival through the geophone offset, obtaining the geophone offset range through the first arrival time of the same refraction layer, carrying out the speed analysis of different directions, obtaining the refraction speed parameters of different directions, carrying out the five-parameter ellipse fitting of the refra</description><language>chi ; eng</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210416&amp;DB=EPODOC&amp;CC=CN&amp;NR=112666606A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210416&amp;DB=EPODOC&amp;CC=CN&amp;NR=112666606A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA QINGPO</creatorcontrib><creatorcontrib>MU ZHIPING</creatorcontrib><creatorcontrib>NING HONGXIAO</creatorcontrib><creatorcontrib>CUI SHITIAN</creatorcontrib><creatorcontrib>ZU YUNFEI</creatorcontrib><title>Method and device for determining near-surface azimuth anisotropy speed</title><description>The invention discloses a method and device for determining near-surface azimuth anisotropy speed. The method comprises the steps of collecting the seismic data of a to-be-measured region, and picking up the first arrival time according to the seismic data, comparing the first arrival time with a preset threshold value, and obtaining effective first arrival according to a comparison result, obtaining a corresponding relationship among the common center point, the offset and the azimuth angle through the effective first arrival of the common center point, and grouping the effective first arrival, obtaining the first arrival time of the same refraction layer according to the grouped effective first arrival through the geophone offset, obtaining the geophone offset range through the first arrival time of the same refraction layer, carrying out the speed analysis of different directions, obtaining the refraction speed parameters of different directions, carrying out the five-parameter ellipse fitting of the refra</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD3TS3JyE9RSMxLUUhJLctMTlVIyy8CMktSi3Iz8zLz0hXyUhOLdItLi9ISgZKJVZm5pSUZQPWZxfklRfkFlQrFBampKTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4AKg3L7Uk3tnP0NDIDAgMzByNiVEDAHuHNDo</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>MA QINGPO</creator><creator>MU ZHIPING</creator><creator>NING HONGXIAO</creator><creator>CUI SHITIAN</creator><creator>ZU YUNFEI</creator><scope>EVB</scope></search><sort><creationdate>20210416</creationdate><title>Method and device for determining near-surface azimuth anisotropy speed</title><author>MA QINGPO ; MU ZHIPING ; NING HONGXIAO ; CUI SHITIAN ; ZU YUNFEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112666606A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>MA QINGPO</creatorcontrib><creatorcontrib>MU ZHIPING</creatorcontrib><creatorcontrib>NING HONGXIAO</creatorcontrib><creatorcontrib>CUI SHITIAN</creatorcontrib><creatorcontrib>ZU YUNFEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA QINGPO</au><au>MU ZHIPING</au><au>NING HONGXIAO</au><au>CUI SHITIAN</au><au>ZU YUNFEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and device for determining near-surface azimuth anisotropy speed</title><date>2021-04-16</date><risdate>2021</risdate><abstract>The invention discloses a method and device for determining near-surface azimuth anisotropy speed. The method comprises the steps of collecting the seismic data of a to-be-measured region, and picking up the first arrival time according to the seismic data, comparing the first arrival time with a preset threshold value, and obtaining effective first arrival according to a comparison result, obtaining a corresponding relationship among the common center point, the offset and the azimuth angle through the effective first arrival of the common center point, and grouping the effective first arrival, obtaining the first arrival time of the same refraction layer according to the grouped effective first arrival through the geophone offset, obtaining the geophone offset range through the first arrival time of the same refraction layer, carrying out the speed analysis of different directions, obtaining the refraction speed parameters of different directions, carrying out the five-parameter ellipse fitting of the refra</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112666606A
source esp@cenet
subjects DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title Method and device for determining near-surface azimuth anisotropy speed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20QINGPO&rft.date=2021-04-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112666606A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true