Weakly supervised convolutional neural network image target positioning method

The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG YUNJIANG, PU XITONG, LUO CHUNBO, XU YAN, XU JIALANG, LUO YANG, WEI SHICAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG YUNJIANG
PU XITONG
LUO CHUNBO
XU YAN
XU JIALANG
LUO YANG
WEI SHICAI
description The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112509046A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112509046A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112509046A3</originalsourceid><addsrcrecordid>eNrjZPALT03MzqlUKC4tSC0qyyxOTVFIzs8ry88pLcnMz0vMUchLLS0CUyXl-UXZCpm5iempCiWJRempJQoF-cWZIGWZeekKuaklGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTkVaFK8s5-hoZGpgaWBiZmjMTFqALovN8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Weakly supervised convolutional neural network image target positioning method</title><source>esp@cenet</source><creator>ZHANG YUNJIANG ; PU XITONG ; LUO CHUNBO ; XU YAN ; XU JIALANG ; LUO YANG ; WEI SHICAI</creator><creatorcontrib>ZHANG YUNJIANG ; PU XITONG ; LUO CHUNBO ; XU YAN ; XU JIALANG ; LUO YANG ; WEI SHICAI</creatorcontrib><description>The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210316&amp;DB=EPODOC&amp;CC=CN&amp;NR=112509046A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210316&amp;DB=EPODOC&amp;CC=CN&amp;NR=112509046A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YUNJIANG</creatorcontrib><creatorcontrib>PU XITONG</creatorcontrib><creatorcontrib>LUO CHUNBO</creatorcontrib><creatorcontrib>XU YAN</creatorcontrib><creatorcontrib>XU JIALANG</creatorcontrib><creatorcontrib>LUO YANG</creatorcontrib><creatorcontrib>WEI SHICAI</creatorcontrib><title>Weakly supervised convolutional neural network image target positioning method</title><description>The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPALT03MzqlUKC4tSC0qyyxOTVFIzs8ry88pLcnMz0vMUchLLS0CUyXl-UXZCpm5iempCiWJRempJQoF-cWZIGWZeekKuaklGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTkVaFK8s5-hoZGpgaWBiZmjMTFqALovN8A</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>ZHANG YUNJIANG</creator><creator>PU XITONG</creator><creator>LUO CHUNBO</creator><creator>XU YAN</creator><creator>XU JIALANG</creator><creator>LUO YANG</creator><creator>WEI SHICAI</creator><scope>EVB</scope></search><sort><creationdate>20210316</creationdate><title>Weakly supervised convolutional neural network image target positioning method</title><author>ZHANG YUNJIANG ; PU XITONG ; LUO CHUNBO ; XU YAN ; XU JIALANG ; LUO YANG ; WEI SHICAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112509046A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YUNJIANG</creatorcontrib><creatorcontrib>PU XITONG</creatorcontrib><creatorcontrib>LUO CHUNBO</creatorcontrib><creatorcontrib>XU YAN</creatorcontrib><creatorcontrib>XU JIALANG</creatorcontrib><creatorcontrib>LUO YANG</creatorcontrib><creatorcontrib>WEI SHICAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YUNJIANG</au><au>PU XITONG</au><au>LUO CHUNBO</au><au>XU YAN</au><au>XU JIALANG</au><au>LUO YANG</au><au>WEI SHICAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Weakly supervised convolutional neural network image target positioning method</title><date>2021-03-16</date><risdate>2021</risdate><abstract>The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112509046A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Weakly supervised convolutional neural network image target positioning method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YUNJIANG&rft.date=2021-03-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112509046A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true