Weakly supervised convolutional neural network image target positioning method
The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classificatio...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG YUNJIANG PU XITONG LUO CHUNBO XU YAN XU JIALANG LUO YANG WEI SHICAI |
description | The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112509046A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112509046A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112509046A3</originalsourceid><addsrcrecordid>eNrjZPALT03MzqlUKC4tSC0qyyxOTVFIzs8ry88pLcnMz0vMUchLLS0CUyXl-UXZCpm5iempCiWJRempJQoF-cWZIGWZeekKuaklGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTkVaFK8s5-hoZGpgaWBiZmjMTFqALovN8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Weakly supervised convolutional neural network image target positioning method</title><source>esp@cenet</source><creator>ZHANG YUNJIANG ; PU XITONG ; LUO CHUNBO ; XU YAN ; XU JIALANG ; LUO YANG ; WEI SHICAI</creator><creatorcontrib>ZHANG YUNJIANG ; PU XITONG ; LUO CHUNBO ; XU YAN ; XU JIALANG ; LUO YANG ; WEI SHICAI</creatorcontrib><description>The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210316&DB=EPODOC&CC=CN&NR=112509046A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210316&DB=EPODOC&CC=CN&NR=112509046A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YUNJIANG</creatorcontrib><creatorcontrib>PU XITONG</creatorcontrib><creatorcontrib>LUO CHUNBO</creatorcontrib><creatorcontrib>XU YAN</creatorcontrib><creatorcontrib>XU JIALANG</creatorcontrib><creatorcontrib>LUO YANG</creatorcontrib><creatorcontrib>WEI SHICAI</creatorcontrib><title>Weakly supervised convolutional neural network image target positioning method</title><description>The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPALT03MzqlUKC4tSC0qyyxOTVFIzs8ry88pLcnMz0vMUchLLS0CUyXl-UXZCpm5iempCiWJRempJQoF-cWZIGWZeekKuaklGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTkVaFK8s5-hoZGpgaWBiZmjMTFqALovN8A</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>ZHANG YUNJIANG</creator><creator>PU XITONG</creator><creator>LUO CHUNBO</creator><creator>XU YAN</creator><creator>XU JIALANG</creator><creator>LUO YANG</creator><creator>WEI SHICAI</creator><scope>EVB</scope></search><sort><creationdate>20210316</creationdate><title>Weakly supervised convolutional neural network image target positioning method</title><author>ZHANG YUNJIANG ; PU XITONG ; LUO CHUNBO ; XU YAN ; XU JIALANG ; LUO YANG ; WEI SHICAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112509046A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YUNJIANG</creatorcontrib><creatorcontrib>PU XITONG</creatorcontrib><creatorcontrib>LUO CHUNBO</creatorcontrib><creatorcontrib>XU YAN</creatorcontrib><creatorcontrib>XU JIALANG</creatorcontrib><creatorcontrib>LUO YANG</creatorcontrib><creatorcontrib>WEI SHICAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YUNJIANG</au><au>PU XITONG</au><au>LUO CHUNBO</au><au>XU YAN</au><au>XU JIALANG</au><au>LUO YANG</au><au>WEI SHICAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Weakly supervised convolutional neural network image target positioning method</title><date>2021-03-16</date><risdate>2021</risdate><abstract>The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112509046A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Weakly supervised convolutional neural network image target positioning method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YUNJIANG&rft.date=2021-03-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112509046A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |