Weakly supervised convolutional neural network image target positioning method

The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG YUNJIANG, PU XITONG, LUO CHUNBO, XU YAN, XU JIALANG, LUO YANG, WEI SHICAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention discloses a weakly supervised convolutional neural network image target positioning method, which comprises the following steps of: establishing a convolutional neural network classification model with a batch normalization layer, training the convolutional neural network classification model, and storing the trained convolutional neural network classification model; s2, inputting ato-be-positioned image into the convolutional neural network classification model trained in the step S1, and obtaining a feature map output by the deep convolutional layer; performing weighted fusionon the obtained feature map to obtain a saliency map; converting the obtained saliency map into a thermodynamic diagram, and superposing the thermodynamic diagram on the input image to generate a composite image; and storing or visualizing the obtained composite image to obtain a target positioning image. According to the weak supervision convolutional neural network image target positioning method using the batch normali