STACKED CONVOLUTIONAL LONG SHORT-TERM MEMORY FOR MODEL-FREE REINFORCEMENT LEARNING

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for controlling an agent interacting with an environment. One of the methods includes obtaining a representation of an observation; processing the representation using a convolutional long short-term memo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUEZ ARTHUR CLEMENT, KABRA RISHABH, MIRZA MOHAMMADI MEHDI, GREGOR KAROL
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods, systems, and apparatus, including computer programs encoded on computer storage media, for controlling an agent interacting with an environment. One of the methods includes obtaining a representation of an observation; processing the representation using a convolutional long short-term memory (LSTM) neural network comprising a plurality of convolutional LSTM neural network layers; processing an action selection input comprising the final LSTM hidden state output for the time step using an action selection neural network that is configured to receive the action selection input and to process the action selection input to generate an action selection output that defines an action to be performed by the agent at the time step; selecting, from the action selection output, the action to be performed by the agent at the time step in accordance with an action selection policy; and causing the agent to perform the selected action. 方法、系统和装置,包括编码在计算机存储介质上的计算机程序,用于控制与环境交互的代理。方法中的一种方法包括获取观察的表示;使用包括多个卷积长短期记忆LSTM神