Fuzzy C-means soft balance clustering algorithm driven by distribution entropy

The invention relates to a clustering problem in the field of machine learning, in particular to a fuzzy C-means soft balance clustering algorithm driven by distribution entropy, which comprises the following steps: 1, defining the distribution entropy of a hard label matrix; 2, defining a correspon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YIN HONGWEI, WANG ZHEYUN, JIANG YUNLIANG, HU WENJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention relates to a clustering problem in the field of machine learning, in particular to a fuzzy C-means soft balance clustering algorithm driven by distribution entropy, which comprises the following steps: 1, defining the distribution entropy of a hard label matrix; 2, defining a corresponding relationship between the hard label matrix and the fuzzy membership matrix; 3, constructing a square loss term by adopting a Frobenius norm to measure the distance between the hard label matrix and the fuzzy membership matrix; 4, constructing a fuzzy C-means soft balance clustering model drivenby the distribution entropy in combination with the distribution entropy and the square loss term of the label matrix; and 5, solving the model by adopting an alternate optimization strategy. 本发明涉及机器学习领域中的聚类问题,具体涉及一种分布熵驱动的模糊C均值软平衡聚类算法,包括以下步骤:第一,定义硬标签矩阵的分布熵;第二,定义硬标签矩阵和模糊隶属度矩阵之间的对应关系;第三,采用Frobenius范数构建平方损失项度量硬标签矩阵和模糊隶属度矩阵之间的距离;第四,结合标签矩阵的分布熵和平方损失项,构建分布熵驱动的模糊C均值软平衡聚类模型;第五,采用交替优化的策略对模型进行求解。