DCNN-based dual-temporal remote sensing image change detection method

The invention discloses a DCNN-based dual-temporal remote sensing image change detection method, which comprises the steps of inputting a dual-temporal remote sensing image data set into a deep convolutional neural network to generate a dual-temporal feature map, and performing bilinear interpolatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LYU AN, WANG XIN, LYU GUOFANG, ZHANG XIANGLIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention discloses a DCNN-based dual-temporal remote sensing image change detection method, which comprises the steps of inputting a dual-temporal remote sensing image data set into a deep convolutional neural network to generate a dual-temporal feature map, and performing bilinear interpolation on the dual-temporal feature map; enabling the size of the dual-temporal feature map to be the same as the size of a remote sensing image in the dual-temporal remote sensing image data set, calculating an Euclidean distance between the dual-temporal feature maps after bilinear interpolation, generating a difference image according to the Euclidean distance, extracting a feature vector of each pixel block in the difference image, and constructing a feature vector space according to each featurevector; and clustering the feature vector space, forming the coarse change detection graph according to the clustering result, performing morphological filtering on the coarse change detection graphto generate the change det