Mechanical state monitoring method based on CELMDAN and SSKFDA
The invention discloses a CELMDAN and SSKFDA-based mechanical state monitoring method. The CELMDAN and SSKFDA-based mechanical state monitoring method includes the following steps that: (1) a CELMDANmethod is adopted to decompose complex vibration signals into a plurality of product functions with p...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention discloses a CELMDAN and SSKFDA-based mechanical state monitoring method. The CELMDAN and SSKFDA-based mechanical state monitoring method includes the following steps that: (1) a CELMDANmethod is adopted to decompose complex vibration signals into a plurality of product functions with physical significance; (2) a method of taking a periodic modulation intensity PMI as a PFs selectioncriterion is provided, so that effective PFs can be accurately selected. (3) an SSKFDA dimension reduction method is provided, geometrical information of a label sample and an unlabeled sample set isfully utilized, a kernel method, sparse representation, manifold learning and an FDA method are fused, a low-dimensional subspace data set embedded in a high-dimensional sparse space is better disclosed, and the problem of dimension reduction of high-dimensional, sparse and nonlinear data is solved. (4) a rapid SSKFDA model selection method is proposed, according to the method, optimal model parameters are solved based on |
---|