Shield tunneling machine guiding prediction method, model training method, device and equipment

The invention discloses a shield tunneling machine guiding prediction method which comprises the following steps: obtaining real-time shield tunneling data of a shield tunneling machine; inputting thereal-time shield data into a guide prediction model to obtain prediction guide data; obtaining a gui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI ZENGLIANG, YUE LINHUI, LIU YANHUI, YU XIANGTAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI ZENGLIANG
YUE LINHUI
LIU YANHUI
YU XIANGTAO
description The invention discloses a shield tunneling machine guiding prediction method which comprises the following steps: obtaining real-time shield tunneling data of a shield tunneling machine; inputting thereal-time shield data into a guide prediction model to obtain prediction guide data; obtaining a guiding prediction result of the shield tunneling machine according to the prediction guiding data. The invention further discloses a guide prediction model training method, device and equipment and a storage medium. Due to the fact that the real-time shield data of the shield tunneling machine is thereal-time shield data collected when the shield tunneling machine operates, compared with mechanical analysis data, the real-time shield data is advantageous in that accuracy is higher, so that the shield guidance is predicted by inputting the real-time shield data into the guidance prediction model, the accuracy of the obtained prediction guidance data is higher, and the accuracy of the obtainedguidance prediction result
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111931842A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111931842A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111931842A3</originalsourceid><addsrcrecordid>eNqNizEOwjAQBNNQIOAPRw-FCQWUKAJR0UAfWb4lPsk-m8Th_QiUB1CtZjQ7r9q7FwSmMqoiiHYUrfOioG4U_nLuweKKJKWI4hNvKCZGoNJb0d9j0oy3OJBVJrxGyRFaltXsacOA1bSLan05P5rrFjm1GLJ1UJS2uRljjrU57Hen-p_mA5D6PP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Shield tunneling machine guiding prediction method, model training method, device and equipment</title><source>esp@cenet</source><creator>LI ZENGLIANG ; YUE LINHUI ; LIU YANHUI ; YU XIANGTAO</creator><creatorcontrib>LI ZENGLIANG ; YUE LINHUI ; LIU YANHUI ; YU XIANGTAO</creatorcontrib><description>The invention discloses a shield tunneling machine guiding prediction method which comprises the following steps: obtaining real-time shield tunneling data of a shield tunneling machine; inputting thereal-time shield data into a guide prediction model to obtain prediction guide data; obtaining a guiding prediction result of the shield tunneling machine according to the prediction guiding data. The invention further discloses a guide prediction model training method, device and equipment and a storage medium. Due to the fact that the real-time shield data of the shield tunneling machine is thereal-time shield data collected when the shield tunneling machine operates, compared with mechanical analysis data, the real-time shield data is advantageous in that accuracy is higher, so that the shield guidance is predicted by inputting the real-time shield data into the guidance prediction model, the accuracy of the obtained prediction guidance data is higher, and the accuracy of the obtainedguidance prediction result</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201113&amp;DB=EPODOC&amp;CC=CN&amp;NR=111931842A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201113&amp;DB=EPODOC&amp;CC=CN&amp;NR=111931842A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI ZENGLIANG</creatorcontrib><creatorcontrib>YUE LINHUI</creatorcontrib><creatorcontrib>LIU YANHUI</creatorcontrib><creatorcontrib>YU XIANGTAO</creatorcontrib><title>Shield tunneling machine guiding prediction method, model training method, device and equipment</title><description>The invention discloses a shield tunneling machine guiding prediction method which comprises the following steps: obtaining real-time shield tunneling data of a shield tunneling machine; inputting thereal-time shield data into a guide prediction model to obtain prediction guide data; obtaining a guiding prediction result of the shield tunneling machine according to the prediction guiding data. The invention further discloses a guide prediction model training method, device and equipment and a storage medium. Due to the fact that the real-time shield data of the shield tunneling machine is thereal-time shield data collected when the shield tunneling machine operates, compared with mechanical analysis data, the real-time shield data is advantageous in that accuracy is higher, so that the shield guidance is predicted by inputting the real-time shield data into the guidance prediction model, the accuracy of the obtained prediction guidance data is higher, and the accuracy of the obtainedguidance prediction result</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAQBNNQIOAPRw-FCQWUKAJR0UAfWb4lPsk-m8Th_QiUB1CtZjQ7r9q7FwSmMqoiiHYUrfOioG4U_nLuweKKJKWI4hNvKCZGoNJb0d9j0oy3OJBVJrxGyRFaltXsacOA1bSLan05P5rrFjm1GLJ1UJS2uRljjrU57Hen-p_mA5D6PP4</recordid><startdate>20201113</startdate><enddate>20201113</enddate><creator>LI ZENGLIANG</creator><creator>YUE LINHUI</creator><creator>LIU YANHUI</creator><creator>YU XIANGTAO</creator><scope>EVB</scope></search><sort><creationdate>20201113</creationdate><title>Shield tunneling machine guiding prediction method, model training method, device and equipment</title><author>LI ZENGLIANG ; YUE LINHUI ; LIU YANHUI ; YU XIANGTAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111931842A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI ZENGLIANG</creatorcontrib><creatorcontrib>YUE LINHUI</creatorcontrib><creatorcontrib>LIU YANHUI</creatorcontrib><creatorcontrib>YU XIANGTAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI ZENGLIANG</au><au>YUE LINHUI</au><au>LIU YANHUI</au><au>YU XIANGTAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Shield tunneling machine guiding prediction method, model training method, device and equipment</title><date>2020-11-13</date><risdate>2020</risdate><abstract>The invention discloses a shield tunneling machine guiding prediction method which comprises the following steps: obtaining real-time shield tunneling data of a shield tunneling machine; inputting thereal-time shield data into a guide prediction model to obtain prediction guide data; obtaining a guiding prediction result of the shield tunneling machine according to the prediction guiding data. The invention further discloses a guide prediction model training method, device and equipment and a storage medium. Due to the fact that the real-time shield data of the shield tunneling machine is thereal-time shield data collected when the shield tunneling machine operates, compared with mechanical analysis data, the real-time shield data is advantageous in that accuracy is higher, so that the shield guidance is predicted by inputting the real-time shield data into the guidance prediction model, the accuracy of the obtained prediction guidance data is higher, and the accuracy of the obtainedguidance prediction result</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111931842A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Shield tunneling machine guiding prediction method, model training method, device and equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20ZENGLIANG&rft.date=2020-11-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111931842A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true