Clustering-based personalized shopping guide system
The invention relates to the technical field of electronic commerce, in particular to a shopping guide system for providing personalized recommendation for a target user by utilizing commodity attributes, user historical score data and other information. The system comprises a data collection module...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention relates to the technical field of electronic commerce, in particular to a shopping guide system for providing personalized recommendation for a target user by utilizing commodity attributes, user historical score data and other information. The system comprises a data collection module, a behavior quantification module, a commodity category screening module, a matrix filling module,a user clustering module and a recommendation generation module. The data collection module is used for collecting commodity attributes and user behavior data; the behavior quantification module is used for quantifying operation behaviors of the user; the commodity category screening module is used for screening categories of all commodities; the matrix filling module performs matrix filling by using a naive Bayesian algorithm, and preliminarily predicts scores of unoperated commodities; the user clustering module is used for clustering the users by utilizing a binary K-means algorithm based on a density division crit |
---|