一种基于机器学习与回溯法结合的模具组合分配方法
一种基于机器学习与回溯法结合的模具组合分配方法属于信息技术领域,首先依据预制构件生产企业的历史日生产订单数据,对单日的生产订单按照构件类型的生产件数进行分组,运用0-1背包思想对每个分组构建组合分配模型,并通过回溯法找到充分利用模台面积的理论最佳适配组合结果,运用改进的BL定位算法模拟模具在模台上的摆放过程,通过回溯法寻找剩下的构件中的最佳适配组合结果,得到该单日的生产订单中的最佳适配组合集合。将所有的订单进行训练,得到一个最佳适配集合库,运用Apriori算法对得到的数据集进行训练,设置最小支持度,得到频繁项集里所包含的关联规则。减少了换模时间,增加了模台的利用率。 The inventio...
Gespeichert in:
Format: | Patent |
---|---|
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 一种基于机器学习与回溯法结合的模具组合分配方法属于信息技术领域,首先依据预制构件生产企业的历史日生产订单数据,对单日的生产订单按照构件类型的生产件数进行分组,运用0-1背包思想对每个分组构建组合分配模型,并通过回溯法找到充分利用模台面积的理论最佳适配组合结果,运用改进的BL定位算法模拟模具在模台上的摆放过程,通过回溯法寻找剩下的构件中的最佳适配组合结果,得到该单日的生产订单中的最佳适配组合集合。将所有的订单进行训练,得到一个最佳适配集合库,运用Apriori算法对得到的数据集进行训练,设置最小支持度,得到频繁项集里所包含的关联规则。减少了换模时间,增加了模台的利用率。
The invention discloses a die combination distribution method based on combination of machine learning and a backtracking method, and belongs to the technical field of information. The method comprises the steps: according to historical days of a prefabricated part production enterprise, grouping the production orders of a single day according to the number of the production parts of the part type; constructing a combined distribution model for each group by applying a 0-1 knapsack thought; finding out a theoretical optimal adaptive combination result fully utilizing the area of the die tablethrough the backtracking method, simulating the placing process of the die on the die table through an improved BL positioning algorithm, |
---|