10kV feeder line fault prediction method based on CNN and LightGBM
The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original dat...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YUAN JIHE HUANG HU FENG DELUN PENG GANG ZHANG XI LIU YALING JIA SHITAO YANG QING FAN MIN |
description | The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110929918A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110929918A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110929918A3</originalsourceid><addsrcrecordid>eNrjZHAyNMgOU0hLTU1JLVLIycxLVUhLLM0pUSgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDynf38FBLzUhR8MtMzStydfHkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhgaWRpaWhhaMxMWoAZGkwOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>10kV feeder line fault prediction method based on CNN and LightGBM</title><source>esp@cenet</source><creator>YUAN JIHE ; HUANG HU ; FENG DELUN ; PENG GANG ; ZHANG XI ; LIU YALING ; JIA SHITAO ; YANG QING ; FAN MIN</creator><creatorcontrib>YUAN JIHE ; HUANG HU ; FENG DELUN ; PENG GANG ; ZHANG XI ; LIU YALING ; JIA SHITAO ; YANG QING ; FAN MIN</creatorcontrib><description>The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200327&DB=EPODOC&CC=CN&NR=110929918A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200327&DB=EPODOC&CC=CN&NR=110929918A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUAN JIHE</creatorcontrib><creatorcontrib>HUANG HU</creatorcontrib><creatorcontrib>FENG DELUN</creatorcontrib><creatorcontrib>PENG GANG</creatorcontrib><creatorcontrib>ZHANG XI</creatorcontrib><creatorcontrib>LIU YALING</creatorcontrib><creatorcontrib>JIA SHITAO</creatorcontrib><creatorcontrib>YANG QING</creatorcontrib><creatorcontrib>FAN MIN</creatorcontrib><title>10kV feeder line fault prediction method based on CNN and LightGBM</title><description>The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAyNMgOU0hLTU1JLVLIycxLVUhLLM0pUSgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDynf38FBLzUhR8MtMzStydfHkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhgaWRpaWhhaMxMWoAZGkwOA</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>YUAN JIHE</creator><creator>HUANG HU</creator><creator>FENG DELUN</creator><creator>PENG GANG</creator><creator>ZHANG XI</creator><creator>LIU YALING</creator><creator>JIA SHITAO</creator><creator>YANG QING</creator><creator>FAN MIN</creator><scope>EVB</scope></search><sort><creationdate>20200327</creationdate><title>10kV feeder line fault prediction method based on CNN and LightGBM</title><author>YUAN JIHE ; HUANG HU ; FENG DELUN ; PENG GANG ; ZHANG XI ; LIU YALING ; JIA SHITAO ; YANG QING ; FAN MIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110929918A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>YUAN JIHE</creatorcontrib><creatorcontrib>HUANG HU</creatorcontrib><creatorcontrib>FENG DELUN</creatorcontrib><creatorcontrib>PENG GANG</creatorcontrib><creatorcontrib>ZHANG XI</creatorcontrib><creatorcontrib>LIU YALING</creatorcontrib><creatorcontrib>JIA SHITAO</creatorcontrib><creatorcontrib>YANG QING</creatorcontrib><creatorcontrib>FAN MIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUAN JIHE</au><au>HUANG HU</au><au>FENG DELUN</au><au>PENG GANG</au><au>ZHANG XI</au><au>LIU YALING</au><au>JIA SHITAO</au><au>YANG QING</au><au>FAN MIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>10kV feeder line fault prediction method based on CNN and LightGBM</title><date>2020-03-27</date><risdate>2020</risdate><abstract>The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110929918A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | 10kV feeder line fault prediction method based on CNN and LightGBM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUAN%20JIHE&rft.date=2020-03-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110929918A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |