10kV feeder line fault prediction method based on CNN and LightGBM

The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YUAN JIHE, HUANG HU, FENG DELUN, PENG GANG, ZHANG XI, LIU YALING, JIA SHITAO, YANG QING, FAN MIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YUAN JIHE
HUANG HU
FENG DELUN
PENG GANG
ZHANG XI
LIU YALING
JIA SHITAO
YANG QING
FAN MIN
description The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110929918A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110929918A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110929918A3</originalsourceid><addsrcrecordid>eNrjZHAyNMgOU0hLTU1JLVLIycxLVUhLLM0pUSgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDynf38FBLzUhR8MtMzStydfHkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhgaWRpaWhhaMxMWoAZGkwOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>10kV feeder line fault prediction method based on CNN and LightGBM</title><source>esp@cenet</source><creator>YUAN JIHE ; HUANG HU ; FENG DELUN ; PENG GANG ; ZHANG XI ; LIU YALING ; JIA SHITAO ; YANG QING ; FAN MIN</creator><creatorcontrib>YUAN JIHE ; HUANG HU ; FENG DELUN ; PENG GANG ; ZHANG XI ; LIU YALING ; JIA SHITAO ; YANG QING ; FAN MIN</creatorcontrib><description>The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200327&amp;DB=EPODOC&amp;CC=CN&amp;NR=110929918A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200327&amp;DB=EPODOC&amp;CC=CN&amp;NR=110929918A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUAN JIHE</creatorcontrib><creatorcontrib>HUANG HU</creatorcontrib><creatorcontrib>FENG DELUN</creatorcontrib><creatorcontrib>PENG GANG</creatorcontrib><creatorcontrib>ZHANG XI</creatorcontrib><creatorcontrib>LIU YALING</creatorcontrib><creatorcontrib>JIA SHITAO</creatorcontrib><creatorcontrib>YANG QING</creatorcontrib><creatorcontrib>FAN MIN</creatorcontrib><title>10kV feeder line fault prediction method based on CNN and LightGBM</title><description>The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAyNMgOU0hLTU1JLVLIycxLVUhLLM0pUSgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDynf38FBLzUhR8MtMzStydfHkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhgaWRpaWhhaMxMWoAZGkwOA</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>YUAN JIHE</creator><creator>HUANG HU</creator><creator>FENG DELUN</creator><creator>PENG GANG</creator><creator>ZHANG XI</creator><creator>LIU YALING</creator><creator>JIA SHITAO</creator><creator>YANG QING</creator><creator>FAN MIN</creator><scope>EVB</scope></search><sort><creationdate>20200327</creationdate><title>10kV feeder line fault prediction method based on CNN and LightGBM</title><author>YUAN JIHE ; HUANG HU ; FENG DELUN ; PENG GANG ; ZHANG XI ; LIU YALING ; JIA SHITAO ; YANG QING ; FAN MIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110929918A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>YUAN JIHE</creatorcontrib><creatorcontrib>HUANG HU</creatorcontrib><creatorcontrib>FENG DELUN</creatorcontrib><creatorcontrib>PENG GANG</creatorcontrib><creatorcontrib>ZHANG XI</creatorcontrib><creatorcontrib>LIU YALING</creatorcontrib><creatorcontrib>JIA SHITAO</creatorcontrib><creatorcontrib>YANG QING</creatorcontrib><creatorcontrib>FAN MIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUAN JIHE</au><au>HUANG HU</au><au>FENG DELUN</au><au>PENG GANG</au><au>ZHANG XI</au><au>LIU YALING</au><au>JIA SHITAO</au><au>YANG QING</au><au>FAN MIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>10kV feeder line fault prediction method based on CNN and LightGBM</title><date>2020-03-27</date><risdate>2020</risdate><abstract>The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110929918A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title 10kV feeder line fault prediction method based on CNN and LightGBM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUAN%20JIHE&rft.date=2020-03-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110929918A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true