10kV feeder line fault prediction method based on CNN and LightGBM

The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YUAN JIHE, HUANG HU, FENG DELUN, PENG GANG, ZHANG XI, LIU YALING, JIA SHITAO, YANG QING, FAN MIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention discloses a 10kV feeder line fault prediction method based on a CNN (Convolutional Neural Network) and LightGBM (LightGBM), and the method mainly comprises the steps: 1), obtaining the original data of a power distribution network, and carrying out the preprocessing of the original data of the power distribution network; 2) extracting features from the original data of the power distribution network, and constructing a feature set f {f1, f2... F15, f16, L}, wherein L is a label and represents whether the feeder line has a fault or not, the element f1, the element f2, the elementf3, the element f4, the element f5 and the element f6 are inherent attribute characteristics, the element f7, the element f8, the element f9, the element f10, the element f11, the element f12 and theelement f13 are statistical analysis characteristics, and the element f14, the element f15 and the element f16 are depth time sequence features extracted by a convolutional neural network CNN; 3) establishing a power distribut