Fuzzy clustering evaluation method based on dichotomy modularity
The invention provides a fuzzy clustering evaluation method based on dichotomy modularity, which integrates intra-class compactness, inter-class separability and dichotomy modularity together and is used for determining an optimal classification result of a fuzzy C-means clustering algorithm. The in...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention provides a fuzzy clustering evaluation method based on dichotomy modularity, which integrates intra-class compactness, inter-class separability and dichotomy modularity together and is used for determining an optimal classification result of a fuzzy C-means clustering algorithm. The index is combined with intra-class compactness and inter-class separability, the robustness of the index is enhanced, the optimal cluster number can be accurately detected, and the accuracy of evaluating the clustering result is improved.
本发明提出了一种基于二分模块度的模糊聚类评价方法,将类内紧致性、类间分离性与二分模块度融合在一起,用于确定模糊C均值聚类算法的最优分类结果。该指标结合类内紧致性与类间分离性,增强了指标的鲁棒性,且能够准确检测最佳类簇数目,提高了评估聚类结果的准确率。 |
---|