Vehicle model identification method based on deep residual network
The invention discloses a vehicle model identification method based on a deep residual network and relates to the machine vision field. Under different backgrounds, a vehicle characteristic can be extracted and a vehicle model can be identified. The method comprises the following steps of carrying o...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention discloses a vehicle model identification method based on a deep residual network and relates to the machine vision field. Under different backgrounds, a vehicle characteristic can be extracted and a vehicle model can be identified. The method comprises the following steps of carrying out parameter initialization on the deep residual network; loading training data into the deep residual network, and combining a data enhancement strategy to train and acquire the trained deep residual network; and loading a vehicle model image into the trained deep residual network, identifying thetrained deep residual network and outputting a type label from a network output terminal.
本发明公开了种基于深度残差网络的车型识别方法,涉及计算机视觉领域,能够在不同背景下提取车辆特征,进行车型识别。本发明包括:对深度残差网络进行参数初始化;将训练数据载入深度残差网络,结合数据增强策略,训练得到训练好的深度残差网络;将车型图像载入训练好的深度残差网络,训练好的深度残差网络进行识别,并从网络输出端输出类别标签。 |
---|