Biological method for preparing ferrite-bismuth ferrite composite fluorescent material

The present invention relates to a biological method for preparing a ferrite-bismuth ferrite composite fluorescent material. The biological method comprises three steps of: step I: in a tryptone soy broth culture medium, respectively culturing 30 g/L shewanella putrefaciens MR-1 and 30 g/L iron-redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG XIAOYAN, WANG LEI, CHEN JINGCHUN, LI HAILONG, DONG HAILIANG, REN WEI, BIAN LIANG, SHI FANIAN, HOU WENPING
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention relates to a biological method for preparing a ferrite-bismuth ferrite composite fluorescent material. The biological method comprises three steps of: step I: in a tryptone soy broth culture medium, respectively culturing 30 g/L shewanella putrefaciens MR-1 and 30 g/L iron-reducing bacteria CN-32; step II: using a peptization reflow technique to prepare transition metal single-doped iron oxide hydroxide; and step III: under an aerobic condition at the room temperature, adding the single-doped iron oxide hydroxide and bismuth ferrite respectively into the shewanella putrefaciens MR-1 and the iron reduction bacteria CN-32, standing and layering to obtain the ferrite-bismuth ferrite nano composite fluorescent material respectively prepared from the shewanella putrefaciens MR-1 and the iron-reducing bacteria CN-32. Compared with the current conditions, the biological method for preparing the ferrite-bismuth ferrite composite fluorescent material has the advantages of a low price, a simple process, less pollution, and a high recovery rate. The ferrite-bismuth ferrite composite fluorescent material powder obtained by the method is high in purity, complete in topography, and uniform in thickness, has good fluorescent properties and can be applied to the fields of magnetic resonance imaging, targeting drug delivery, magnetic hyperthermia, and the like.