MACHINE LEARNING PLATFORM FOR GENERATING RISK MODELS

The disclosed embodiments concern methods, apparatus, systems, and computer program products for developing polygenic risk score (PRS) models. In some implementations, a fully automated process is provided that allows for a PRS model to be defined by an initial set of parameters. In some implementat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SURESH, SANJEEV, MARSHALL, AUSTIN WILLIAM, AMIRI, SHIVA, KOELSCH, BERTRAM LORENZ, ZHAN, JIANAN, HAMILTON, SHANNON M, GANESAN, MANOJ, SINHA, SUBARNAREKHA, POLCARI, MICHAEL, MACPHERSON, JOHN MICHAEL, KONDO, DERRICK POO-RAY, ASHENHURST, JAMES ROWAN, BLAKKAN, CORDELL T
Format: Patent
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SURESH, SANJEEV
MARSHALL, AUSTIN WILLIAM
AMIRI, SHIVA
KOELSCH, BERTRAM LORENZ
ZHAN, JIANAN
HAMILTON, SHANNON M
GANESAN, MANOJ
SINHA, SUBARNAREKHA
POLCARI, MICHAEL
MACPHERSON, JOHN MICHAEL
KONDO, DERRICK POO-RAY
ASHENHURST, JAMES ROWAN
BLAKKAN, CORDELL T
description The disclosed embodiments concern methods, apparatus, systems, and computer program products for developing polygenic risk score (PRS) models. In some implementations, a fully automated process is provided that allows for a PRS model to be defined by an initial set of parameters. In some implementations the PRS models are trained to provide a PRS for particular populations. Les modes de réalisation de l'invention concernent des procédés, un appareil, des systèmes et des produits programmes d'ordinateur pour développer des modèles de score de risque polygénique (PRS). Dans certains modes de réalisation, l'invention concerne un procédé entièrement automatisé qui permet de définir un modèle de PRS au moyen d'un ensemble initial de paramètres. Dans certains modes de réalisation, les modèles de PRS sont entraînés pour fournir un PRS pour des populations particulières.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CA3179983A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CA3179983A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CA3179983A13</originalsourceid><addsrcrecordid>eNrjZDDxdXT28PRzVfBxdQzy8_RzVwjwcQxx8w_yVQASCu6ufq5BjiEg8SDPYG8FX38XV59gHgbWtMSc4lReKM3NoODmGuLsoZtakB-fWlyQmJyal1oS7-xobGhuaWlh7GhoTIQSAHE8JuM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING PLATFORM FOR GENERATING RISK MODELS</title><source>esp@cenet</source><creator>SURESH, SANJEEV ; MARSHALL, AUSTIN WILLIAM ; AMIRI, SHIVA ; KOELSCH, BERTRAM LORENZ ; ZHAN, JIANAN ; HAMILTON, SHANNON M ; GANESAN, MANOJ ; SINHA, SUBARNAREKHA ; POLCARI, MICHAEL ; MACPHERSON, JOHN MICHAEL ; KONDO, DERRICK POO-RAY ; ASHENHURST, JAMES ROWAN ; BLAKKAN, CORDELL T</creator><creatorcontrib>SURESH, SANJEEV ; MARSHALL, AUSTIN WILLIAM ; AMIRI, SHIVA ; KOELSCH, BERTRAM LORENZ ; ZHAN, JIANAN ; HAMILTON, SHANNON M ; GANESAN, MANOJ ; SINHA, SUBARNAREKHA ; POLCARI, MICHAEL ; MACPHERSON, JOHN MICHAEL ; KONDO, DERRICK POO-RAY ; ASHENHURST, JAMES ROWAN ; BLAKKAN, CORDELL T</creatorcontrib><description>The disclosed embodiments concern methods, apparatus, systems, and computer program products for developing polygenic risk score (PRS) models. In some implementations, a fully automated process is provided that allows for a PRS model to be defined by an initial set of parameters. In some implementations the PRS models are trained to provide a PRS for particular populations. Les modes de réalisation de l'invention concernent des procédés, un appareil, des systèmes et des produits programmes d'ordinateur pour développer des modèles de score de risque polygénique (PRS). Dans certains modes de réalisation, l'invention concerne un procédé entièrement automatisé qui permet de définir un modèle de PRS au moyen d'un ensemble initial de paramètres. Dans certains modes de réalisation, les modèles de PRS sont entraînés pour fournir un PRS pour des populations particulières.</description><language>eng ; fre</language><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211202&amp;DB=EPODOC&amp;CC=CA&amp;NR=3179983A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211202&amp;DB=EPODOC&amp;CC=CA&amp;NR=3179983A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SURESH, SANJEEV</creatorcontrib><creatorcontrib>MARSHALL, AUSTIN WILLIAM</creatorcontrib><creatorcontrib>AMIRI, SHIVA</creatorcontrib><creatorcontrib>KOELSCH, BERTRAM LORENZ</creatorcontrib><creatorcontrib>ZHAN, JIANAN</creatorcontrib><creatorcontrib>HAMILTON, SHANNON M</creatorcontrib><creatorcontrib>GANESAN, MANOJ</creatorcontrib><creatorcontrib>SINHA, SUBARNAREKHA</creatorcontrib><creatorcontrib>POLCARI, MICHAEL</creatorcontrib><creatorcontrib>MACPHERSON, JOHN MICHAEL</creatorcontrib><creatorcontrib>KONDO, DERRICK POO-RAY</creatorcontrib><creatorcontrib>ASHENHURST, JAMES ROWAN</creatorcontrib><creatorcontrib>BLAKKAN, CORDELL T</creatorcontrib><title>MACHINE LEARNING PLATFORM FOR GENERATING RISK MODELS</title><description>The disclosed embodiments concern methods, apparatus, systems, and computer program products for developing polygenic risk score (PRS) models. In some implementations, a fully automated process is provided that allows for a PRS model to be defined by an initial set of parameters. In some implementations the PRS models are trained to provide a PRS for particular populations. Les modes de réalisation de l'invention concernent des procédés, un appareil, des systèmes et des produits programmes d'ordinateur pour développer des modèles de score de risque polygénique (PRS). Dans certains modes de réalisation, l'invention concerne un procédé entièrement automatisé qui permet de définir un modèle de PRS au moyen d'un ensemble initial de paramètres. Dans certains modes de réalisation, les modèles de PRS sont entraînés pour fournir un PRS pour des populations particulières.</description><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDxdXT28PRzVfBxdQzy8_RzVwjwcQxx8w_yVQASCu6ufq5BjiEg8SDPYG8FX38XV59gHgbWtMSc4lReKM3NoODmGuLsoZtakB-fWlyQmJyal1oS7-xobGhuaWlh7GhoTIQSAHE8JuM</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>SURESH, SANJEEV</creator><creator>MARSHALL, AUSTIN WILLIAM</creator><creator>AMIRI, SHIVA</creator><creator>KOELSCH, BERTRAM LORENZ</creator><creator>ZHAN, JIANAN</creator><creator>HAMILTON, SHANNON M</creator><creator>GANESAN, MANOJ</creator><creator>SINHA, SUBARNAREKHA</creator><creator>POLCARI, MICHAEL</creator><creator>MACPHERSON, JOHN MICHAEL</creator><creator>KONDO, DERRICK POO-RAY</creator><creator>ASHENHURST, JAMES ROWAN</creator><creator>BLAKKAN, CORDELL T</creator><scope>EVB</scope></search><sort><creationdate>20211202</creationdate><title>MACHINE LEARNING PLATFORM FOR GENERATING RISK MODELS</title><author>SURESH, SANJEEV ; MARSHALL, AUSTIN WILLIAM ; AMIRI, SHIVA ; KOELSCH, BERTRAM LORENZ ; ZHAN, JIANAN ; HAMILTON, SHANNON M ; GANESAN, MANOJ ; SINHA, SUBARNAREKHA ; POLCARI, MICHAEL ; MACPHERSON, JOHN MICHAEL ; KONDO, DERRICK POO-RAY ; ASHENHURST, JAMES ROWAN ; BLAKKAN, CORDELL T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CA3179983A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre</language><creationdate>2021</creationdate><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SURESH, SANJEEV</creatorcontrib><creatorcontrib>MARSHALL, AUSTIN WILLIAM</creatorcontrib><creatorcontrib>AMIRI, SHIVA</creatorcontrib><creatorcontrib>KOELSCH, BERTRAM LORENZ</creatorcontrib><creatorcontrib>ZHAN, JIANAN</creatorcontrib><creatorcontrib>HAMILTON, SHANNON M</creatorcontrib><creatorcontrib>GANESAN, MANOJ</creatorcontrib><creatorcontrib>SINHA, SUBARNAREKHA</creatorcontrib><creatorcontrib>POLCARI, MICHAEL</creatorcontrib><creatorcontrib>MACPHERSON, JOHN MICHAEL</creatorcontrib><creatorcontrib>KONDO, DERRICK POO-RAY</creatorcontrib><creatorcontrib>ASHENHURST, JAMES ROWAN</creatorcontrib><creatorcontrib>BLAKKAN, CORDELL T</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SURESH, SANJEEV</au><au>MARSHALL, AUSTIN WILLIAM</au><au>AMIRI, SHIVA</au><au>KOELSCH, BERTRAM LORENZ</au><au>ZHAN, JIANAN</au><au>HAMILTON, SHANNON M</au><au>GANESAN, MANOJ</au><au>SINHA, SUBARNAREKHA</au><au>POLCARI, MICHAEL</au><au>MACPHERSON, JOHN MICHAEL</au><au>KONDO, DERRICK POO-RAY</au><au>ASHENHURST, JAMES ROWAN</au><au>BLAKKAN, CORDELL T</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING PLATFORM FOR GENERATING RISK MODELS</title><date>2021-12-02</date><risdate>2021</risdate><abstract>The disclosed embodiments concern methods, apparatus, systems, and computer program products for developing polygenic risk score (PRS) models. In some implementations, a fully automated process is provided that allows for a PRS model to be defined by an initial set of parameters. In some implementations the PRS models are trained to provide a PRS for particular populations. Les modes de réalisation de l'invention concernent des procédés, un appareil, des systèmes et des produits programmes d'ordinateur pour développer des modèles de score de risque polygénique (PRS). Dans certains modes de réalisation, l'invention concerne un procédé entièrement automatisé qui permet de définir un modèle de PRS au moyen d'un ensemble initial de paramètres. Dans certains modes de réalisation, les modèles de PRS sont entraînés pour fournir un PRS pour des populations particulières.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre
recordid cdi_epo_espacenet_CA3179983A1
source esp@cenet
subjects INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title MACHINE LEARNING PLATFORM FOR GENERATING RISK MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SURESH,%20SANJEEV&rft.date=2021-12-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECA3179983A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true