CONTROLLING WELLBORE EQUIPMENT USING A HYBRID DEEP GENERATIVE PHYSICS NEURAL NETWORK

A system includes equipment for at least one of formation of, stimulation of, or production from a wellbore, a processor, and a non-transitory memory device. The processor is communicatively coupled to the equipment. The non-transitory memory device contains instructions executable by the processor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: MADASU, SRINATH
Format: Patent
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system includes equipment for at least one of formation of, stimulation of, or production from a wellbore, a processor, and a non-transitory memory device. The processor is communicatively coupled to the equipment. The non-transitory memory device contains instructions executable by the processor to cause the processor to perform operations comprising training a hybrid deep generative physics neural network (HDGPNN), iteratively computing a plurality of projected values for wellbore variables using the HDGPNN, comparing the projected values to measured values, adjusting the projected values using the HDGPNN until the projected values match the measured values within a convergence criteria to produce an output value for at least one controllable parameter, and controlling the equipment by applying the output value for the at least one controllable parameter.