FAILED AND CENSORED INSTANCES BASED REMAINING USEFUL LIFE (RUL) ESTIMATION OF ENTITIES

Estimating Remaining Useful Life (RUL) from multi-sensor time series data is difficult through manual inspection. Current machine learning and data analytics methods, for RUL estimation require large number of failed instances for training, which are rarely available in practice, and these methods c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MALHOTRA, PANKAJ, TV, VISHNU, SHROFF, GAUTAM, VIG, LOVEKESH
Format: Patent
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Estimating Remaining Useful Life (RUL) from multi-sensor time series data is difficult through manual inspection. Current machine learning and data analytics methods, for RUL estimation require large number of failed instances for training, which are rarely available in practice, and these methods cannot use information from currently operational censored instances since their failure time is unknown. Embodiments of the present disclosure provide systems and methods for estimating RUL using time series data by implementing an LSTM-RNN based ordinal regression technique, wherein during training RUL value of failed instance(s) is encoded into a vector which is given as a target to the model. Unlike a failed instance, the exact RUL for a censored instance is unknown. For using the censored instances, target vectors are generated and the objective function is modified for training wherein the trained LSTM-RNN based ordinal regression is applied on an input test time series for RUL estimation.