PURIFICATION OF AND CLONING OF THE GENE FOR INTERLEUKIN-2 RECEPTOR
Interleukin-2 receptor derived from normal and malignant cells has been purified by use of various techniques including affinity chromatography in conjunction with a monoclonal antibody directed to the receptor. The purification process also includes reversed phased high performance liquid chromatog...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interleukin-2 receptor derived from normal and malignant cells has been purified by use of various techniques including affinity chromatography in conjunction with a monoclonal antibody directed to the receptor. The purification process also includes reversed phased high performance liquid chromatography. By these techniques, interleukin-2 receptor has been purified to homogeneity. The high purification of the interleukin-2 receptor has made possible the sequencing of the amino acid residues at the N-terminal of this protein molecule. Double-stranded cDNA is prepared from polyadenylated RNA extracted from cell lines or other sources known to produce IL-2 receptor. The cDNA is inserted within a plasmid vector and then the recombinant plasmid employed to transform an appropriate host. Transformed hosts are identified and grouped into pools. Plasmid DNA prepared from these pools is hybridized with a labeled synthetic oligonucleotide probe corresponding to a portion of theamino acid sequence of the purified IL-2 receptor. The cDNA clone isolated with the probe is characterized by restriction enzyme mapping and sequenced by chain-termination method. The particular DNA clone that actually contains the gene coding for the functional IL-2 receptor is identified by expressing the clones in COS-7 monkey kidney cells and assaying for the expressed IL-2 receptor by its ability to bind IL-2 or a monoclonal antibody directed against the IL-2 receptor. |
---|