Improved method of forming superconducting composite article

A novel process of the production and processing of high quality, high Tc BSCCO or (Bi,Pb)SCCO superconductors starts with fabrication of a forming a bundle including a plurality of billets, each billet containing at least one filament comprising a dominant amount of an tetragonal BSCCO phase with s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WILLIAM L. CARTER, QI LI, MARK D. TEPLITSKY, DONALD R. PARKER, RONALD D. PARRELLA, MARTIN W. RUPICH, LAWRENCE J. MASUR, ERIC R. PODTBURG, GILBERT N. RILEY JR, WILLIAM J. ROSATI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel process of the production and processing of high quality, high Tc BSCCO or (Bi,Pb)SCCO superconductors starts with fabrication of a forming a bundle including a plurality of billets, each billet containing at least one filament comprising a dominant amount of an tetragonal BSCCO phase with selected intermediate phases, and substantially surrounded by a constraining metal. The bundle is thermomechanically consolidated to form a multifilamentary precursor article by applying pressure and heat to the bundle under conditions cooperatively selected to cause interdiffusion of said constraining metal at the interfaces between said metal and said filaments and substantially complete elimination of voids in said bundle, and the consolidation step is completed before any high strain longitudinal deformation is performed on the bundle. The precursor article is then heated at a second selected processing temperature in an inert atmosphere with a second selected oxygen partial pressure for a second selected time period, the second processing temperature, the second time period and the second oxygen partial pressure being cooperatively selected to form a dominant amount of an orthorhombic BSCCO phase in the reacted mixture. It may then be deformed to form an elongated precursor article of a desired texture; and thereafter heated at a third selected processing temperature in an inert atmosphere with a third selected oxygen partial pressure for a third selected time period, all cooperatively selected to convert at least a portion of the orthorhombic BSCCO phase to the final superconducting BSCCO material.