ALLOCATING COMPUTING RESOURCES BETWEEN MODEL SIZE AND TRAINING DATA DURING TRAINING OF A MACHINE LEARNING MODEL
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task. In one aspect, a method performed by one or more computer is described. The method includes: obtaining data defining a compute...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task. In one aspect, a method performed by one or more computer is described. The method includes: obtaining data defining a compute budget that characterizes an amount of computing resources allocated for training a machine learning model to perform a machine learning task; processing the data defining the compute budget using an allocation mapping, in accordance with a set of allocation mapping parameters, to generate an allocation tuple defining: (i) a target model size for the machine learning model, and (ii) a target amount of training data for training the machine learning model; instantiating the machine learning model, where the machine learning model has the target model size; and obtaining the target amount of training data for training the machine learning model. |
---|