MACHINE-LEARNING MODELS FOR DETECTING AND ADJUSTING VALUES FOR NUCLEOTIDE METHYLATION LEVELS

This disclosure describes methods, non-transitory computer readable media, and systems that can use a machine-learning to determine factors or scores indicating an error level with which a given methylation assay detects methylation of cytosine bases. For instance, the disclosed systems use a machin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ALMASI, Sepideh, EBERLE, Michael, SHULTZABERGER, Sarah E, MANZO, Andrea, NORBERG, Steven, DOLZHENKO, Egor, MATHONET, Pascale, GUERRERO, Luis Fernando Camarillo, BROWN, Colin, ROHRBACK, Suzanne
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ALMASI, Sepideh
EBERLE, Michael
SHULTZABERGER, Sarah E
MANZO, Andrea
NORBERG, Steven
DOLZHENKO, Egor
MATHONET, Pascale
GUERRERO, Luis Fernando Camarillo
BROWN, Colin
ROHRBACK, Suzanne
description This disclosure describes methods, non-transitory computer readable media, and systems that can use a machine-learning to determine factors or scores indicating an error level with which a given methylation assay detects methylation of cytosine bases. For instance, the disclosed systems use a machine-learning model to generate a bias score indicating a degree to which a given methylation assay errs in detecting cytosine methylation when specific sequence contexts surround such cytosines compared to other sequence contexts. The machine-learning model may take various forms of models, including a decision-tree model, a neural network, or a combination of a decision-tree model and a neural network. In some cases, the disclosed system combines or uses bias scores from multiple machine-learning models to generate a consensus bias score.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2023225949A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2023225949A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2023225949A13</originalsourceid><addsrcrecordid>eNrjZIjxdXT28PRz1fVxdQzy8_RzV_D1d3H1CVZw8w9ScHENcXUOAQk6-rkoOLp4hQaDeWGOPqGuECV-oc4-rv4hni6uCr6uIR6RPo4hnv5-Cj6uYUBDeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJvGOokYGRsZGRqaWJpaOhMXGqAIDcM0s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE-LEARNING MODELS FOR DETECTING AND ADJUSTING VALUES FOR NUCLEOTIDE METHYLATION LEVELS</title><source>esp@cenet</source><creator>ALMASI, Sepideh ; EBERLE, Michael ; SHULTZABERGER, Sarah E ; MANZO, Andrea ; NORBERG, Steven ; DOLZHENKO, Egor ; MATHONET, Pascale ; GUERRERO, Luis Fernando Camarillo ; BROWN, Colin ; ROHRBACK, Suzanne</creator><creatorcontrib>ALMASI, Sepideh ; EBERLE, Michael ; SHULTZABERGER, Sarah E ; MANZO, Andrea ; NORBERG, Steven ; DOLZHENKO, Egor ; MATHONET, Pascale ; GUERRERO, Luis Fernando Camarillo ; BROWN, Colin ; ROHRBACK, Suzanne</creatorcontrib><description>This disclosure describes methods, non-transitory computer readable media, and systems that can use a machine-learning to determine factors or scores indicating an error level with which a given methylation assay detects methylation of cytosine bases. For instance, the disclosed systems use a machine-learning model to generate a bias score indicating a degree to which a given methylation assay errs in detecting cytosine methylation when specific sequence contexts surround such cytosines compared to other sequence contexts. The machine-learning model may take various forms of models, including a decision-tree model, a neural network, or a combination of a decision-tree model and a neural network. In some cases, the disclosed system combines or uses bias scores from multiple machine-learning models to generate a consensus bias score.</description><language>eng</language><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240118&amp;DB=EPODOC&amp;CC=AU&amp;NR=2023225949A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240118&amp;DB=EPODOC&amp;CC=AU&amp;NR=2023225949A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ALMASI, Sepideh</creatorcontrib><creatorcontrib>EBERLE, Michael</creatorcontrib><creatorcontrib>SHULTZABERGER, Sarah E</creatorcontrib><creatorcontrib>MANZO, Andrea</creatorcontrib><creatorcontrib>NORBERG, Steven</creatorcontrib><creatorcontrib>DOLZHENKO, Egor</creatorcontrib><creatorcontrib>MATHONET, Pascale</creatorcontrib><creatorcontrib>GUERRERO, Luis Fernando Camarillo</creatorcontrib><creatorcontrib>BROWN, Colin</creatorcontrib><creatorcontrib>ROHRBACK, Suzanne</creatorcontrib><title>MACHINE-LEARNING MODELS FOR DETECTING AND ADJUSTING VALUES FOR NUCLEOTIDE METHYLATION LEVELS</title><description>This disclosure describes methods, non-transitory computer readable media, and systems that can use a machine-learning to determine factors or scores indicating an error level with which a given methylation assay detects methylation of cytosine bases. For instance, the disclosed systems use a machine-learning model to generate a bias score indicating a degree to which a given methylation assay errs in detecting cytosine methylation when specific sequence contexts surround such cytosines compared to other sequence contexts. The machine-learning model may take various forms of models, including a decision-tree model, a neural network, or a combination of a decision-tree model and a neural network. In some cases, the disclosed system combines or uses bias scores from multiple machine-learning models to generate a consensus bias score.</description><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjxdXT28PRz1fVxdQzy8_RzV_D1d3H1CVZw8w9ScHENcXUOAQk6-rkoOLp4hQaDeWGOPqGuECV-oc4-rv4hni6uCr6uIR6RPo4hnv5-Cj6uYUBDeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJvGOokYGRsZGRqaWJpaOhMXGqAIDcM0s</recordid><startdate>20240118</startdate><enddate>20240118</enddate><creator>ALMASI, Sepideh</creator><creator>EBERLE, Michael</creator><creator>SHULTZABERGER, Sarah E</creator><creator>MANZO, Andrea</creator><creator>NORBERG, Steven</creator><creator>DOLZHENKO, Egor</creator><creator>MATHONET, Pascale</creator><creator>GUERRERO, Luis Fernando Camarillo</creator><creator>BROWN, Colin</creator><creator>ROHRBACK, Suzanne</creator><scope>EVB</scope></search><sort><creationdate>20240118</creationdate><title>MACHINE-LEARNING MODELS FOR DETECTING AND ADJUSTING VALUES FOR NUCLEOTIDE METHYLATION LEVELS</title><author>ALMASI, Sepideh ; EBERLE, Michael ; SHULTZABERGER, Sarah E ; MANZO, Andrea ; NORBERG, Steven ; DOLZHENKO, Egor ; MATHONET, Pascale ; GUERRERO, Luis Fernando Camarillo ; BROWN, Colin ; ROHRBACK, Suzanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2023225949A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ALMASI, Sepideh</creatorcontrib><creatorcontrib>EBERLE, Michael</creatorcontrib><creatorcontrib>SHULTZABERGER, Sarah E</creatorcontrib><creatorcontrib>MANZO, Andrea</creatorcontrib><creatorcontrib>NORBERG, Steven</creatorcontrib><creatorcontrib>DOLZHENKO, Egor</creatorcontrib><creatorcontrib>MATHONET, Pascale</creatorcontrib><creatorcontrib>GUERRERO, Luis Fernando Camarillo</creatorcontrib><creatorcontrib>BROWN, Colin</creatorcontrib><creatorcontrib>ROHRBACK, Suzanne</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ALMASI, Sepideh</au><au>EBERLE, Michael</au><au>SHULTZABERGER, Sarah E</au><au>MANZO, Andrea</au><au>NORBERG, Steven</au><au>DOLZHENKO, Egor</au><au>MATHONET, Pascale</au><au>GUERRERO, Luis Fernando Camarillo</au><au>BROWN, Colin</au><au>ROHRBACK, Suzanne</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE-LEARNING MODELS FOR DETECTING AND ADJUSTING VALUES FOR NUCLEOTIDE METHYLATION LEVELS</title><date>2024-01-18</date><risdate>2024</risdate><abstract>This disclosure describes methods, non-transitory computer readable media, and systems that can use a machine-learning to determine factors or scores indicating an error level with which a given methylation assay detects methylation of cytosine bases. For instance, the disclosed systems use a machine-learning model to generate a bias score indicating a degree to which a given methylation assay errs in detecting cytosine methylation when specific sequence contexts surround such cytosines compared to other sequence contexts. The machine-learning model may take various forms of models, including a decision-tree model, a neural network, or a combination of a decision-tree model and a neural network. In some cases, the disclosed system combines or uses bias scores from multiple machine-learning models to generate a consensus bias score.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_AU2023225949A1
source esp@cenet
subjects INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title MACHINE-LEARNING MODELS FOR DETECTING AND ADJUSTING VALUES FOR NUCLEOTIDE METHYLATION LEVELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ALMASI,%20Sepideh&rft.date=2024-01-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2023225949A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true