MACHINE-LEARNING MODELS FOR DETECTING AND ADJUSTING VALUES FOR NUCLEOTIDE METHYLATION LEVELS
This disclosure describes methods, non-transitory computer readable media, and systems that can use a machine-learning to determine factors or scores indicating an error level with which a given methylation assay detects methylation of cytosine bases. For instance, the disclosed systems use a machin...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This disclosure describes methods, non-transitory computer readable media, and systems that can use a machine-learning to determine factors or scores indicating an error level with which a given methylation assay detects methylation of cytosine bases. For instance, the disclosed systems use a machine-learning model to generate a bias score indicating a degree to which a given methylation assay errs in detecting cytosine methylation when specific sequence contexts surround such cytosines compared to other sequence contexts. The machine-learning model may take various forms of models, including a decision-tree model, a neural network, or a combination of a decision-tree model and a neural network. In some cases, the disclosed system combines or uses bias scores from multiple machine-learning models to generate a consensus bias score. |
---|