Integrated machine learning and rules platform for improved accuracy and root cause analysis
Aspects of the present disclosure provide techniques for machine learning and rules integration. Embodiments include receiving input values corresponding to a subset of a set of input variables associated with an automated determination. Embodiments include generating a directed acyclic graph (DAG)...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aspects of the present disclosure provide techniques for machine learning and rules integration. Embodiments include receiving input values corresponding to a subset of a set of input variables associated with an automated determination. Embodiments include generating a directed acyclic graph (DAG) representing a set of constraints corresponding to the set of input variables. The set of constraints relate to one or more machine learning models and one or more rules. Embodiments include receiving one or more outputs from the one or more machine learning models based on one or more of the input values. Embodiments include determining outcomes for the one or more rules based on at least one of the input values. Embodiments include populating the DAG based on the input values, the one or more outputs, and the outcomes. Embodiments include making the automated determination based on logic represented by the DAG. |
---|