Optimizing questions to retain engagement
A method optimizes questions to retain engagement. The method includes generating, using a machine learning model, a churn risk from user interaction data. The method includes selecting, when the churn risk satisfies a threshold, a field, from multiple fields, using multiple prediction confidences c...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Scott, Glenn Carter Mouatadid, Lalla Furbish, Kevin Michael |
description | A method optimizes questions to retain engagement. The method includes generating, using a machine learning model, a churn risk from user interaction data. The method includes selecting, when the churn risk satisfies a threshold, a field, from multiple fields, using multiple prediction confidences corresponding to multiple prediction values generated for the multiple fields. The method includes obtaining a prediction value for the field and obtaining a question, corresponding to the field, using the prediction value. The method includes presenting the question and receiving a user input in response to the question. GENERATING, USING A MACHINE LEARNING MODEL, A CHURN RISK FROM USER INTERACTION SELECTING, WHEN THE CHURN RISK SATISFIES A THRESHOLD, A FIELD USING PREDICTION CONFIDENCES CORRESPONDING TO PREDICTION VALUES GENERATED FOR MULTIPLE FIELDS OBTAINING A PREDICTION VALUE FOR THE FIELD OBTAINING A QUESTION, CORRESPONDING TO THE FIELD, USING A PREDICTION VALUE PRESENTING THE QUESTION RECEIVING A USER INPUT IN RESPONSE TO THE |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_AU2022203723A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AU2022203723A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_AU2022203723A13</originalsourceid><addsrcrecordid>eNrjZND0LyjJzM2sysxLVygsTS0uyczPK1YoyVcoSi1JzMxTSM1LT0xPzU3NK-FhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGOoUYGRkZGBsbmRsaOhsbEqQIA1_8p5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optimizing questions to retain engagement</title><source>esp@cenet</source><creator>Scott, Glenn Carter ; Mouatadid, Lalla ; Furbish, Kevin Michael</creator><creatorcontrib>Scott, Glenn Carter ; Mouatadid, Lalla ; Furbish, Kevin Michael</creatorcontrib><description>A method optimizes questions to retain engagement. The method includes generating, using a machine learning model, a churn risk from user interaction data. The method includes selecting, when the churn risk satisfies a threshold, a field, from multiple fields, using multiple prediction confidences corresponding to multiple prediction values generated for the multiple fields. The method includes obtaining a prediction value for the field and obtaining a question, corresponding to the field, using the prediction value. The method includes presenting the question and receiving a user input in response to the question. GENERATING, USING A MACHINE LEARNING MODEL, A CHURN RISK FROM USER INTERACTION SELECTING, WHEN THE CHURN RISK SATISFIES A THRESHOLD, A FIELD USING PREDICTION CONFIDENCES CORRESPONDING TO PREDICTION VALUES GENERATED FOR MULTIPLE FIELDS OBTAINING A PREDICTION VALUE FOR THE FIELD OBTAINING A QUESTION, CORRESPONDING TO THE FIELD, USING A PREDICTION VALUE PRESENTING THE QUESTION RECEIVING A USER INPUT IN RESPONSE TO THE</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230413&DB=EPODOC&CC=AU&NR=2022203723A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230413&DB=EPODOC&CC=AU&NR=2022203723A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Scott, Glenn Carter</creatorcontrib><creatorcontrib>Mouatadid, Lalla</creatorcontrib><creatorcontrib>Furbish, Kevin Michael</creatorcontrib><title>Optimizing questions to retain engagement</title><description>A method optimizes questions to retain engagement. The method includes generating, using a machine learning model, a churn risk from user interaction data. The method includes selecting, when the churn risk satisfies a threshold, a field, from multiple fields, using multiple prediction confidences corresponding to multiple prediction values generated for the multiple fields. The method includes obtaining a prediction value for the field and obtaining a question, corresponding to the field, using the prediction value. The method includes presenting the question and receiving a user input in response to the question. GENERATING, USING A MACHINE LEARNING MODEL, A CHURN RISK FROM USER INTERACTION SELECTING, WHEN THE CHURN RISK SATISFIES A THRESHOLD, A FIELD USING PREDICTION CONFIDENCES CORRESPONDING TO PREDICTION VALUES GENERATED FOR MULTIPLE FIELDS OBTAINING A PREDICTION VALUE FOR THE FIELD OBTAINING A QUESTION, CORRESPONDING TO THE FIELD, USING A PREDICTION VALUE PRESENTING THE QUESTION RECEIVING A USER INPUT IN RESPONSE TO THE</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND0LyjJzM2sysxLVygsTS0uyczPK1YoyVcoSi1JzMxTSM1LT0xPzU3NK-FhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGOoUYGRkZGBsbmRsaOhsbEqQIA1_8p5A</recordid><startdate>20230413</startdate><enddate>20230413</enddate><creator>Scott, Glenn Carter</creator><creator>Mouatadid, Lalla</creator><creator>Furbish, Kevin Michael</creator><scope>EVB</scope></search><sort><creationdate>20230413</creationdate><title>Optimizing questions to retain engagement</title><author>Scott, Glenn Carter ; Mouatadid, Lalla ; Furbish, Kevin Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_AU2022203723A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Scott, Glenn Carter</creatorcontrib><creatorcontrib>Mouatadid, Lalla</creatorcontrib><creatorcontrib>Furbish, Kevin Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scott, Glenn Carter</au><au>Mouatadid, Lalla</au><au>Furbish, Kevin Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optimizing questions to retain engagement</title><date>2023-04-13</date><risdate>2023</risdate><abstract>A method optimizes questions to retain engagement. The method includes generating, using a machine learning model, a churn risk from user interaction data. The method includes selecting, when the churn risk satisfies a threshold, a field, from multiple fields, using multiple prediction confidences corresponding to multiple prediction values generated for the multiple fields. The method includes obtaining a prediction value for the field and obtaining a question, corresponding to the field, using the prediction value. The method includes presenting the question and receiving a user input in response to the question. GENERATING, USING A MACHINE LEARNING MODEL, A CHURN RISK FROM USER INTERACTION SELECTING, WHEN THE CHURN RISK SATISFIES A THRESHOLD, A FIELD USING PREDICTION CONFIDENCES CORRESPONDING TO PREDICTION VALUES GENERATED FOR MULTIPLE FIELDS OBTAINING A PREDICTION VALUE FOR THE FIELD OBTAINING A QUESTION, CORRESPONDING TO THE FIELD, USING A PREDICTION VALUE PRESENTING THE QUESTION RECEIVING A USER INPUT IN RESPONSE TO THE</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_AU2022203723A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Optimizing questions to retain engagement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Scott,%20Glenn%20Carter&rft.date=2023-04-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EAU2022203723A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |