Selection and monitoring methods for xenotransplantation
Predictive engineering of a sample derived from a genetically optimized non-human donor suitable for xenotransplantation into a human having improved quality or performance is described. A training data set is constructed from a series of libraries, including at least one library comprising genomic,...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Predictive engineering of a sample derived from a genetically optimized non-human donor suitable for xenotransplantation into a human having improved quality or performance is described. A training data set is constructed from a series of libraries, including at least one library comprising genomic, proteomic, and research data specific to non-humans. A predictive machine learning model is developed based on the constructed training data set and utilized to obtain a predicted quality or performance of a plurality of sequences for a candidate sample from the non-human donor specific to a human patient or patient population. A subset of sequences is selected for evaluation from the plurality of sequences based on the predicted quality or performance and candidate samples are designed derived from the non-human donor using the selected subset of sequences. |
---|