Ore reduction process using carbon based materials having a low sulfur content and titanium oxide and iron metallization product therefrom

The disclosure is directed to a process for producing separable iron and titanium oxides from an ore comprising titanium oxide and iron oxide, comprising: (a) forming agglomerates comprising carbon-based material and the ore, the quantity of carbon of the agglomerates being at least sufficient for f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHEKIRO JR, JOSEPH M, NGUYEN, DAT, LYKE, STEPHEN ERWIN, BARNES, JOHN JAMES, LIU, GUANGLIANG
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The disclosure is directed to a process for producing separable iron and titanium oxides from an ore comprising titanium oxide and iron oxide, comprising: (a) forming agglomerates comprising carbon-based material and the ore, the quantity of carbon of the agglomerates being at least sufficient for forming a ferrous oxide-containing molten slag, at an elevated temperature; (b) introducing the agglomerates onto a bed of carbon-based material in a moving hearth furnace, wherein the carbon-based materials used for both the agglomerates and the bed have a low sulfur content; (c) heating the agglomerates in the moving hearth furnace to a temperature sufficient for liquefying the agglomerates to produce a liquid comprising ferrous oxide-containing slag; (d) metallizing the ferrous oxide of the slag by reaction of the ferrous oxide and the carbon of the carbon bed at a furnace temperature sufficient for maintaining the slag in a liquid state; (e) solidifying the slag after metallization of the ferrous oxide to form a matrix of titanium oxide-rich slag having a plurality of metallic iron granules distributed there through; and (f) separating the metallic iron granules from the slag, the slag comprising greater than 85% titanium dioxide based on the entire weight of the matrix after separation of the metallic iron. The disclosure is also directed to a metallization product of a ferrous oxide-rich molten slag.