GASDYNAMISCHE BESCHLEUNIGUNGSMETHODE FÜR MATERIALIEN IN PULVERFORM UND VORRICHTUNG ZUR UMSETZUNG DIESER METHODE

The method of accelerating cold compressed gas dynamics of a metallic or non-metallic powder material (4), comprises supplying the powder material in a supersonic nozzle (1) via an injection point, accelerating the material by a supersonic gas flow and depositing the material by impact on the surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LAGET, BERNARD, KLINKOV, SERGEY VLADIMIROVICH, SMUROV, IGOR, BERTRAND, PHILIPPE, KOSAREV, VLADIMIR FEDEROVICH
Format: Patent
Sprache:ger
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The method of accelerating cold compressed gas dynamics of a metallic or non-metallic powder material (4), comprises supplying the powder material in a supersonic nozzle (1) via an injection point, accelerating the material by a supersonic gas flow and depositing the material by impact on the surface of the piece. The compressed gas is heated to 300-9800 K. The acceleration of the material corresponds to the parameters such as particle size, density of the material and gas parameters. The method of accelerating cold compressed gas dynamics of a metallic or non-metallic powder material (4), comprises supplying the powder material in a supersonic nozzle (1) via an injection point, accelerating the material by a supersonic gas flow and depositing the material by impact on the surface of the piece. The compressed gas is heated to 300-9800 K. The acceleration of the material corresponds to the parameters such as particle size, density of the material and gas parameters and satisfying an equation, L=4.35rho pd p+- 50% and b=0.065rho pd p+- 50%, where L is length of the supersonic nozzle, rho p is density of the material, d p is diameter of the particle, b is height of the nozzle and b=d c r is the diameter of the critical section of the axisymmetric nozzle. An independent claim is included for a device for acceleration of cold compressed gas dynamics of a metallic or non-metallic powder material.